

LoRaWAN 863-870 PULSE / Pulse ATEX

Transceiver pulse interfaces

Guide utilisateur / User Guide Version 3.0.0

Product reference	Software APP associated*	Associated user guide version
ADE0220CA (DC1)	<1.2.x	<2.0.x
ARF8230CA (zone RC1)	>2.0.x	3.0.0
ADE0220CA (DC4 - ATEV)	<1.2.x	<2.0.x
ARF8230GA (zone RC1 - ATEX)	>2.0.x	3.0.0
ARF8046xx (reference stopped)	1	1.5.1

*to know the Software APP linked to your product connect it to IoT Configurator

Préambule / Preamble / Präambel / Preambolo / Preámbulo

- Ce guide décrit les fonctionnalités du produit adeunis®. Il explique les modes de fonctionnement du produit et la manière de le configurer.
- This guide describes the functionalities of the product adeunis®. It explains its functionnments and how to configure it.
- Dieser Leitfaden beschreibt die Funktionalität des Produktes adeunis®. Er erklärt die Betriebsfunktionen des Produktes und die Art und Weise, um es zu konfigurieren.
- Questa guida descrive la funzionalità del prodotto adeunis®. Questo spiega come funziona il prodotto e come configurarlo.
- Esta guía describe las funcionalidades del producto adeunis®. En él se explica los modos de funcionamiento del producto y cómo configurarlo.
- Aucun extrait de ce document ne pourra être reproduit ou transmis (sous format électronique ou papier, ou par photocopie) sans l'accord d'adeunis®. Ce document pourra être modifié sans préavis. Toutes les marques citées dans ce quide font l'objet d'un droit de propriété intellectuelle.
- No part of this document may be reproduced or transmitted (in electronic or paper, or photocopying) without the agreement adeunis®. This document may be changed without notice. All trademarks mentioned in this guide are the subject of intellectual property rights. adeunis®.
- Kein Teil dieses Dokuments darf reproduziert oder übertragen werden (in elektronischer oder Papierform oder Fotokopie) ohne die Zustimmung adeunis®. Dieses Dokument darf ohne vorherige Ankündigung geändert werden. Alle Marken in diesem Handbuch erwähnt werden, sind Gegenstand des geistigen Eigentums.
- Nessuna parte di questo documento può essere riprodotta o trasmessa (in fotocopie elettronico o cartaceo, o), senza il consenso adeunis®. Questo documento può essere modificato senza preavviso. Tutti i marchi citati in questa guida sono oggetto di diritti di proprietà intellettuale.
- Ninguna parte de este documento puede ser reproducida o transmitida (en fotocopias electrónico o en papel,
 o) sin el acuerdo adeunis®. Este documento puede ser modificada sin previo aviso. Todas las marcas comerciales mencionadas en esta quía son el tema de los derechos de propiedad intelectual.

Adeunis 283, rue Louis Néel 38920 Crolles France

Web <u>www.adeunis.com</u>

Table des matières 7 **FRANCAIS INFORMATIONS** 8 LoRaWAN PULSE 15 1. Description générale 1.1. 15 1.2. Encombrement 16 1.3. Carte électronique 16 Spécifications Techniques 17 1.4.1 Caractéristiques générales 17 1.4.2 Autonomie 17 1.4.3 Compatibilité capteurs1.4.4 Caractéristiques des interfaces physiques 17 18 Interface d'entrée signal pulse 18 1.4.4.01 Interface d'entrée signal fraude 1.4.4.02 18 FONCTIONNEMENT DU PRODUIT 2. 19 2.1. Modes de fonctionnement 19 2.1.1 Mode PARC 19 2.1.2 Mode COMMANDE 19 2.1.3 Modes EXPLOITATION 19 2.1.4 Gestion de la batterie faible 19 2.2. Fonctionnement applicatif 20 2.2.1 Transmission périodique sans historique 20 2.2.2 Transmission périodique avec historique 21 2.2.3 Transmission périodique avec redondance 22 2.2.4 Transmission sur dépassement de seuil de débit2.2.5 Détection de fraude 23 24 2.2.6 Transmission d'une trame quotidienne 25 2.2.7 Détection de fuite 26 2.3. Fonctionnement des LEDs 27 CONFIGURATION DU PRODUIT 3. 28 3.1. Iot Configurator 28 3.2. Mode Avancé 28 3.2.1 Connecter le produit à un ordinateur 28 3.2.2 Mode commande 29 3.2.3 Commande AT 30 3.2.4 Registres fonction 31 3.2.5 Registres réseau 33 4. **DESCRIPTION DES TRAMES** 37 4.1. Trames montantes (uplink) 37 4.1.1 Octets fixes 37 Code byte 37 4.1.1.01 4.1.1.02 Status byte 37 4.1.2 Trames d'information sur la configuration du produit 38 4.1.3 Trame d'information sur la configuration du réseau 39 4.1.4 Trame quotidienne 39 4.1.5 Trame de réponse à une demande de valeur de registre(s) 40 4.1.6 Trame de données périodique4.1.7 Trame d'alarme 40 41 4.1.8 Trame de données périodique avec historique 41 4.1.9 Synthèse des conditions d'envoi des trames montantes 42 4.2. Trames descendantes (downlink) 43 4.2.1 Trame de demande de la configuration du produit 43 4.2.2 Trame de demande de la configuration du réseau 43 4.2.3 Trame d'ajout d'un décalage aux compteurs d'impulsion (offset) 4.2.4 Trame de demande de valeur de registres spécifiques 43 44 4.2.5 Trame de mise à jour de la valeur de registres spécifiques 44 5. PréparatioN 45 Démontage du boîtier 45 5.1. 5.2. Installation du joint presse étoupe 45 5.3. Montage des compteurs sur les borniers à vis 46

5.4.	Fermeture du boîtier	48
5.5.	5 1	48
6.	INSTALLATION ET UTILISATION	49
6.1.	Positionnement correct des émetteurs	49
	Types de fixations	49
6.2.1	Fixation sur tube ou mât	49
6.2.2	Fixation par vis	50
6.2.3	Fixation Rail-DIN	51
ENGL	ISH	52
INFOR	MATIONS	53
1.	PRODUCT PRESENTATION	60
1.1.	General description Dimensions	60
1.2.	Dimensions	61
1.3.	Electronic card	61
1.4.	Technical Specifications	62
1.4.1	General characteristics	62
	Autonomy	62
	Sensor compatibility	62
	Physical interface characteristics	63
	01 INPUT Circuit	63
	D2 TAMPER Circuit	63
	PRODUCT OPERATION	64
	Global Operation	64
2.1.1	PARK mode	64
	COMMAND mode	64
	OPERATING mode	64
	Management of the low battery	64
2.2.	Application operation	65
2 2 1	Periodic transmission	65 65
	Periodic transmission with history	66
2.2.2	Periodic transmission with redundancy	67
	Flow threshold alarm transmission	68
	Tamper detection	69
	Transmitting a Daily Frame	70
	Leaks detection	70
	Operation of the LEDs	72
3.	DEVICE CONFIGURATION	73
	Iot Configurator	73
	Advanced mode	73
	Connecting the device to a computer	73
	Command mode	73 74
	AT commands	74 74
	Description of the registers	74 76
	Function register	76 76
	Network registers	78
3.4.2 4.	Description of the frames	82
4.1.	Uplink frame	82
		82
4.1.1.0	Fixed bytes	82
4.1.1.0	,	82
	Frames of information on the product configuration	83 84
	Frame of information on the network configuration	84
	Keep Alive frame	84
	Reply frame to a register value request in a downlink frame	85
	Data Frame without historisation	85
	Alarm frame	86
	Periodic frame with historisation	86
	Summary of the conditions of the transmission of the uplink frames	87
4.7.	Downlink frames	88

4.2.1	Product configuration request frame	88
4.2.2	Network configuration request frame	88
4.2.3	Frame for adding an offset to pulse counters	88
4.2.4	Specifc register value request frame	89
4.2.5	Frame for updating the value of specific registers	89
5.	Preparation	90
5.1.	Dismantling the case	90
5.2.	Installation of the compression seal	90
5.3.	Mounting the counters on the screw terminals	91
5.4.	Closing the casing	93
5.5.	Starting up the product using a magnet	93
6.	INSTALLATION AND USE	94
6.1.	Correct positioning of the product	94
6.2.	Types of fastenings	94
6.2.1	Tube or mast fastenings	94
6.2.2	Fixing with screws	95
6.2.3	DIN-Rail fixing	96
7.	DOCUMENT HISTORY	96
DEUT	TSCH	97
Vors	schriften	97

FRANCAIS

INFORMATIONS

Information document	
Titre	LoRaWAN 863-870 PULSE et PULSE ATEX- Guide utilisateur
Sous-titre	Version3.0.0
Type de document	Mise en oeuvre

Ce document s'applique aux produits suivants :

Nom	Référence	Version firmware
LoRaWAN 863-870 PULSE & PULSE ATEX	ARF8230AA & ARF8230FA	Version RTU: V01.07.03 Version APP: V02.00.00

AVERTISSEMENT

Ce document et l'utilisation de toute information qu'il contient, est soumis à l'acceptation des termes et conditions Adeunis.

Adeunis ne donne aucune garantie sur l'exactitude ou l'exhaustivité du contenu de ce document et se réserve le droit d'apporter des modifications aux spécifications et descriptions de produit à tout moment sans préavis.

Adeunis se réserve tous les droits sur ce document et les informations qu'il contient. La reproduction, l'utilisation ou la divulgation à des tiers sans autorisation expresse est strictement interdite. Copyright © 2016, adeunis®.

adeunis® est une marque déposée dans les pays de l'UE et autres.

SUPPORT TECHNIQUE

Site web

Notre site Web contient de nombreuses informations utiles : informations sur les produits et accessoires, guides d'utilisation, logiciel de configuration et de documents techniques qui peuvent être accessibles 24h/24.

Contact

Si vous avez des problèmes techniques ou ne pouvez pas trouver les informations requises dans les documents fournis, contactez notre support technique via notre site Web, rubrique « Support Technique ». Cela permet de s'assurer que votre demande soit traitée le plus rapidement possible.

Informations utiles lorsque vous contactez notre support technique

Lorsque vous contactez le support technique merci de vous munir des informations suivantes :

- Type de produit
- Version du firmware (par exemple V1.0.0)
- Description claire de votre question ou de votre problème
- Vos coordonnées complètes

Déclaration UE de Conformité

Nous

Adeunis 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis.com

Déclarons que la DoC est délivrée sous notre seule responsabilité et fait partie du produit suivant :

Modèle produit : **PULSE LoRaWAN** Références: ARF8230AA

L'objet de la déclaration décrit ci-dessus est conforme à la législation d'harmonisation de l'Union applicable:

Directive 2014/53/UE (RED)

Les normes harmonisées et les spécifications techniques suivantes ont été appliquées :

Titre :	Date du standard/spécificatio
EN 300 220-2 V3.1.1	2017/02
EN 301 489-1 V2.1.1	2016/11
EN 301 489-3 V2.1.0	2016/09
EN 62368-1	2014
EN 62311	2008

5 octobre 2017

Monnet Emmanuel, Responsable Certification

Déclaration UE de Conformité

(Interdit de modifier sans l'accord du référent ATEX)

Auteur	Version	Validation	Date	DESCRIPTION
EMT	0	FDBS	14/11/17	Creation
EMT	1	FDBS	28/05/18	Numéro LCIE ATEX rajouté

Déclaration UE de Conformité

Nous

adeunis

283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis.com

Déclarons que la DoC est délivrée sous notre seule responsabilité et fait partie du produit suivant :

Modèle produit : Pulse ATEX LoRaWAN

Références: ARF8230FA

Objet de la déclaration :

L'objet de la déclaration décrit ci-dessus est conforme à la législation d'harmonisation de l'Union applicable:

Directive 2014/53/UE (RED)

28 Mai 2018

Directive 2014/34/UE (ATEX)

Les normes harmonisées et les spécifications techniques suivantes ont été appliquées :

Date du standard/spécification Titre:

EN 300 220-2 V3.1.1 2017/02 EN 301 489-1 V2.1.1 2016/11 EN 301 489-3 V2.1.0 2016/09 EN 62368-1 2014 EN 62311 2008

EN60079-0 2012+ A11:2013

EN60079-11 2012

L'Organismes Notifiés énumérés ci-dessous a réalisé les procédures d'évaluation de la conformité à la Directive ATEX et délivré le certificat suivant :

Product	Marquage	Certificat N°	ON/N°.
Pulse ATEX ARF8230FA	II 2 G D Ex ib IIC T4 Gb	LCIE 18 ATEX 3019 X	0081
	II 2 G D Ex ib IIIC T135°C Db		

(Interdit de modifier sans l'accord du référent ATEX)

Monnet Emmanuel, Responsable Certification

ED

INTRODUCTION

Tous les droits de ce manuel sont la propriété exclusive de adeunis®. Tous droits réservés. La copie de ce manuel (sans l'autorisation écrite du propriétaire) par impression, copie, enregistrement ou par tout autre moyen, la traduction de ce manuel (complète ou partielle) pour toute autre langue, y compris tous les langages de programmation, en utilisant n'importe quel dispositif électrique, mécanique, magnétique, optique, manuel ou autres méthodes, est interdite.

adeunis® se réserve le droit de modifier les spécifications techniques ou des fonctions de ses produits, ou de cesser la fabrication de l'un de ses produits, ou d'interrompre le support technique de l'un de ses produits, sans aucune notification écrite et demande expresse de ses clients, et de s'assurer que les informations à leur disposition sont valables.

Les logiciels de configurations et programmes adeunis® sont disponibles gratuitement dans une version non modifiable. adeunis® ne peut accorder aucune garantie, y compris des garanties sur l'adéquation et l'applicabilité à un certain type d'applications. Dans aucun cas le fabricant, ou le distributeur d'un programme adeunis®, ne peut être tenu pour responsable pour tous les dommages éventuels causés par l'utilisation dû dit programme. Les noms des programmes ainsi que tous les droits d'auteur relatifs aux programmes sont la propriété exclusive de adeunis®. Tout transfert, octroi de licences à un tiers, crédit-bail, location, transport, copie, édition, traduction, modification dans un autre langage de programmation ou d'ingénierie inversée (retro-ingénierie) est interdit sans l'autorisation écrite et le consentement de adeunis®.

Adeunis

283, rue Louis Néel 38920 Crolles France

RECOMMANDATIONS ENVIRONNEMENTALES

Tous les matériaux d'emballage superflus ont été supprimés. Nous avons fait notre possible afin que l'emballage soit facilement séparable en trois types de matériaux : carton (boîte), polystyrène expansible (matériel tampon) et polyéthylène (sachets, feuille de protection en mousse). Votre appareil est composé de matériaux pouvant être recyclés et réutilisés s'il est démonté par une firme spécialisée. Veuillez observer les règlements locaux sur la manière de vous débarrasser des anciens matériaux d'emballage, des piles usagées et de votre ancien appareil.

AVERTISSEMENTS

Valables pour les produits cités dans la déclaration de conformité.

Lire les instructions dans le manuel.

La sécurité procurée par ce produit n'est assurée que pour un usage conforme à sa destination. La maintenance ne peut être effectuée que par du personnel qualifié.

Risque d'explosion si la batterie est remplacée par un type incorrecte

Attention, ne pas installer l'équipement près d'une source de chaleur ou près d'une source d'humidité.

Attention, lorsque l'équipement est ouvert, ne pas réaliser d'opérations autres que celles prévues dans cette notice.

Attention : ne pas ouvrir le produit, risque de choc électrique.

Attention: pour votre sécurité, il est impératif qu'avant toute intervention technique sur l'équipement celui-ci soit mis hors tension.

Attention: pour votre sécurité, le circuit d'alimentation du produit doit être de type TBTS (très basse tension de sécurité) et doit être des sources à puissance limitée.

Attention: lorsque l'antenne est installée à l'extérieur, il est impératif de connecter l'écran du câble à la terre du bâtiment. Il est recommandé d'utiliser une protection contre la foudre. Le kit de protection choisi doit permettre une mise à la terre du câble coaxial (ex: parafoudre coaxial avec mise à la terre du câble à différents endroits au niveau de l'antenne en bas du pylône et à l'entrée, ou juste avant de pénétrer dans le local).

Il faut que le produit soit muni d'un dispositif de sectionnement pour pouvoir couper l'alimentation. Celui-ci doit être proche de l'équipement.

Tout branchement électrique du produit doit être muni d'un dispositif de protection contre les surcharges et les courts-circuits.

RECOMMANDATIONS D'USAGE

- Avant d'utiliser le système, vérifiez si la tension d'alimentation figurant dans son manuel d'utilisation correspond à votre source. Dans la négative, consultez votre fournisseur.
- Placez l'appareil contre une surface plane, ferme et stable.
- L'appareil doit être installé à un emplacement suffisamment ventilé pour écarter tout risque d'échauffement interne et il ne doit pas être couvert avec des objets tels que journaux, nappes, rideaux, etc.
- L'antenne de l'appareil doit être dégagée et distante de toute matière conductrice de plus de 10 cm.
- L'appareil ne doit jamais être exposé à des sources de chaleur, telles que des appareils de chauffage.
- Ne pas placer l'appareil à proximité d'objets enflammés telles que des bougies allumées, chalumeaux, etc.
- L'appareil ne doit pas être exposé à des agents chimiques agressifs ou solvants susceptibles d'altérer la matière plastique ou de corroder les éléments métalliques.

Élimination des déchets par les utilisateurs dans les ménages privés au sein de l'Union Européenne

Ce symbole sur le produit ou sur son emballage indique que ce produit ne doit pas être jeté avec vos autres ordures ménagères. Au lieu de cela, il est de votre responsabilité de vous débarrasser de vos déchets en les apportant à un point de collecte désigné pour le recyclage des appareils électriques et électroniques. La collecte et le recyclage séparés de vos déchets au moment de l'élimination contribueront à conserver les ressources naturelles et à garantir un recyclage respectueux de l'environnement et de la santé humaine. Pour plus d'informations sur le centre de recyclage le plus proche de votre domicile, contactez la mairie la plus proche, le service d'élimination des ordures ménagères ou le magasin où vous avez acheté le produit.

— — Ce symbole sur le produit ou sur son emballage indique l'utilisation d'un tension continue (DC)

Attention : Il y a un risque d'explosion si les batteries sont remplacées par une référence non correcte. Jeter les batteries suivant les instructions d'usages. Lors du changement des batteries, le produit doit être proprement et correctement remonté.

⚠

IMPORTANT pour la Suisse : l'annexe 4.10 du standard SR 814.013 doit être appliquée pour les batteries

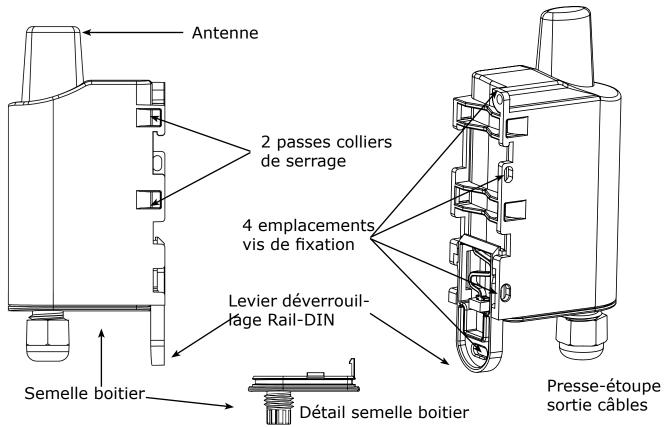
1. DESCRIPTION LoRaWAN PULSE

NOTE IMPORTANTE : le démarrage du LoRaWAN 863-870 PULSE ne peut se faire que grâce à un aimant.

Description

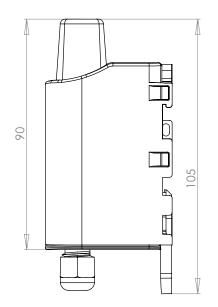
- Le LoRaWAN 863-870 PULSE est un émetteur radio prêt à l'emploi permettant de transformer tout type de compteur en un compteur sans-fil (smart meter).
- Ce produit répond aux besoins des utilisateurs désireux de superviser à distance la consommation de différents fluides (eau, gaz, électricité, chaleur...) ou tout autre phénomène disposant d'une interface impulsionnelle (pluviomètre, odomètre...).
- L'utilisation du protocole LoRaWAN permet d'intégrer le produit à tout réseau déjà déployé
- Deux compteurs 3 fils ou 1 compteur 5 fils peuvent être pris en charge par un seul émetteur LoRaWAN 863-870 PULSE, permettant ainsi une réduction significative des coûts de mise en œuvre et de déploiement.
- Le produit émet les données des compteurs périodiquement avec ou sans historique. Il permet également la détection de fraude, de fuite et le calcul de débit avec des possibilités de transmission sur dépassement de seuils haut ou bas.
- La configuration de l'émetteur est accessible par l'utilisateur en local via un port micro-USB ou à distance via le réseau.
- Le LoRaWAN 863-870 PULSE est alimenté par une pile interne non remplaçable.

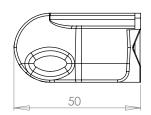
Note: le LoRaWAN 863-870 PULSE est livré par défaut avec une configuration OTAA, permettant à l'utilisateur de déclarer son produit auprès d'un opérateur LoRaWAN.

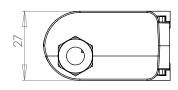

NOTE IMPORTANTE: Le LoRaWAN 863-870 PULSE permet de transmettre les mesures des capteurs mais ne les alimente pas.

Composition du package

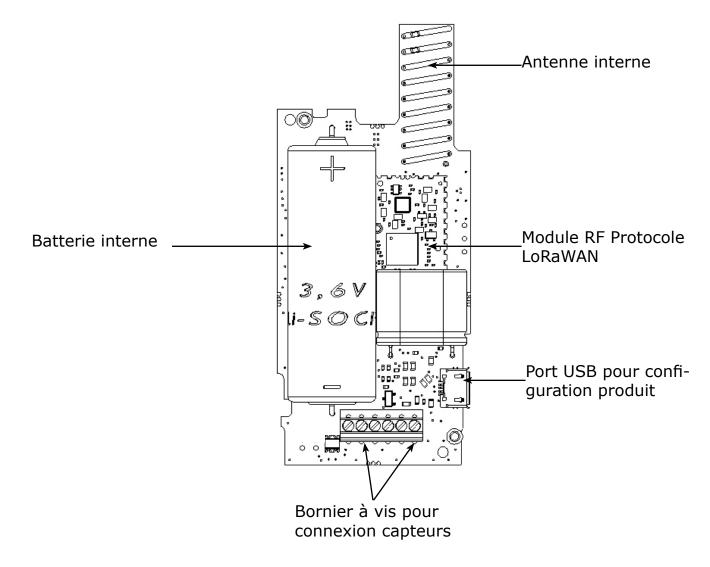
Le produit est livré dans un package carton contenant les éléments suivants :


- Boîtier supérieur, carte électronique, semelle boîtier
- Écrou presse-étoupe, 3 joints de presse-étoupe, 2 vis CBLZ 2.2 x 19mm, 2 chevilles SX4 Fischer


1.1. Description générale



1.2. Encombrement


Valeurs en millimètres

1.3. Carte électronique

1.4. Spécifications Techniques

1.4.1 Caractéristiques générales

Paramètres	Valeur
Tension d'alimentation	3.6V nominal
Alimentation	Pile Li-SOCl2 intégrée (gestion radio et interrogation capteur(s))
Courant maximal	90mA
Température de fonctionnement	-20°C / +40°C
Dimensions	105 x 50 x 27mm
Boîtier	IP 67
Région LoRaWAN	EU 863-870
Spécification LoRaWAN	1.0.2
Puissance d'émission	14 dBm
Port applicatif (downlink)	1

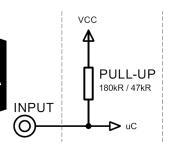
1.4.2 Autonomie

Condition d'utili- sation	Périodicité d'envoi	Nombre de compteurs	Autonomie (en SF7)	Autonomie (en SF12)
	140 trames/jour	1	9.8 an	1.1 an
Stockage produit	140 trames/jour	2	9.6 ans	1.1 an
avant utilisation: 1	100 trames/jour	1	11.5 ans	1.4 an
an maximum.	100 trames/jour	2	11.1 ans	2 ans
Calculs effectués à	50 trames/jour	1	14.4 ans	2.7 ans
une température de	50 trames/jour	2	13.8 ans	2.7 ans
20°C -	20 trames/jour	1	17 ans	5.6 ans
Sur la base de 500 _ impulsions/jour	20 trames/jour	2	16.2 ans	5.5 ans
	2 trames/jour	1	19 ans	15.5 ans
-	2 trames/jour	2	18 ans	15 ans

Les valeurs ci-dessous sont des estimations faites dans certaines conditions d'utilisation et d'environnement. Elles ne représentent en aucun cas un engagement de la part d'adeunis®.

ATTENTION : le branchement du câble USB peut impacter fortement l'autonomie du produit.

1.4.3 Compatibilité capteurs

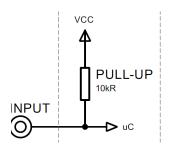

Exemple de compteurs testés par adeunis® (liste non exhaustive) :

Туре	Nom	Type capteur
	Itron Flodis	Cyble Sensor V2
Eau	Wehrle TRK-HYX / ETK-EAX	Wehrle Modularis
	Sappel-Diehl Aquarius/Altair	IZAR Pulse 3 & 4 Fils
Gaz	Elster BK	Elster IN-Z63
Electricité		Fludia FM250E et FM250M
Electricite	Socomec Countis E00	
Thermique	Itron CF Echo II	

FR

1.4.4 Caractéristiques des interfaces physiques 1.4.4.01 Interface d'entrée signal pulse

Le schéma de principe est le suivant :


Valeurs absolues maximum		Unité
Tension minimale d'entrée	- 0.7	V
Tension maximale d'entrée	3.6	V

Caractéristiques électriques	Unité	
Tension minimale d'entrée	0	V
Tension maximale d'entrée	3.3	V
Résistance d'entrée équivalente	180 47	kΩ (Water) kΩ (Gas)
Fréquence d'entrée	<100	HZ
Consommation de courant niveau d'entrée HAUT	0	μΑ
Consommation de courant niveau d'entrée BAS	20 80	μΑ (Water) μΑ (Gas)

Les valeurs supérieures aux valeurs maximales absolues endommageront le produit.

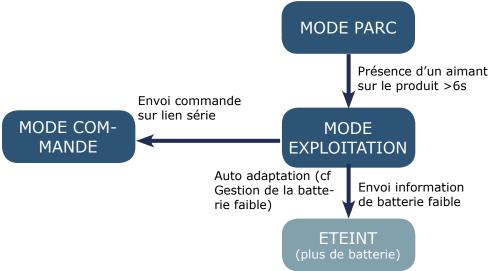
1.4.4.02 Interface d'entrée signal fraude

Le schéma de principe est le suivant :

Valeurs absolues maximum		Unité
Tension minimale d'entrée	- 0.7	V
Tension maximale d'entrée	3.6	V

Caractéristiques électriques		Unité
Tension minimale d'entrée	0	V
Tension maximale d'entrée	3.3	V
Résistance d'entrée équivalente	10	kΩ
Consommation de courant niveau d'entrée HAUT	Non applicable	μΑ
Consommation de courant niveau d'entrée BAS	Non applicable	μΑ

Les valeurs supérieures aux valeurs maximales absolues endommageront le produit.



2. FONCTIONNEMENT DU PRODUIT

2.1. Modes de fonctionnement

NOTE IMPORTANTE : adeunis® utilise le format de données Big-Endian

Le produit dispose de plusieurs modes de fonctionnement :

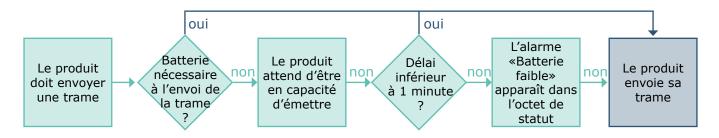
2.1.1 Mode PARC

Le produit est livré en mode PARC, il est alors en veille et sa consommation est minimale. La sortie du mode PARC s'effectue par le passage d'un aimant pendant une durée supérieure à 6 secondes. La LED verte s'allume pour signifier la détection de l'aimant et clignote ensuite rapidement pendant la phase de démarrage du produit.

Le dispositif envoie alors ses trames de configuration et de données (cf paragraphe 4.1).

2.1.2 Mode COMMANDE

Ce mode permet de configurer les registres du produit.

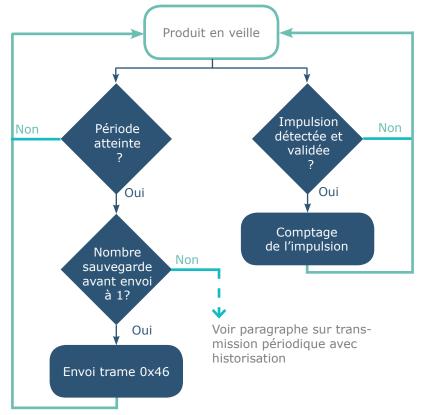

Pour entrer dans ce mode, il faut brancher un câble sur le port micro-usb du produit et entrer en mode commande par une commande AT (cf paragraphe 3).

2.1.3 Modes EXPLOITATION

Ce mode permet de faire fonctionner le produit dans son utilisation finale. Il doit permettre de garantir un maximum d'autonomie au produit.

2.1.4 Gestion de la batterie faible

Lorsque le produit détecte que la pile n'est pas en capacité de délivrer l'énergie nécessaire à une émission (températures extrêmes ou fin de vie de pile) alors il attend d'être en capacité d'émettre. S'il détecte que le délai engendré est supérieur à 1 minute alors il informe l'utilisateur via l'alarme «Batterie Faible» dans l'octet de statut de chacune des trames envoyées par la suite.


L'alarme batterie faible s'éteint automatiquement lorsque la pile est changée ou lorsque les conditions de température sont favorables au bon fonctionnement de la pile.

2.2. Fonctionnement applicatif

2.2.1 Transmission périodique sans historique

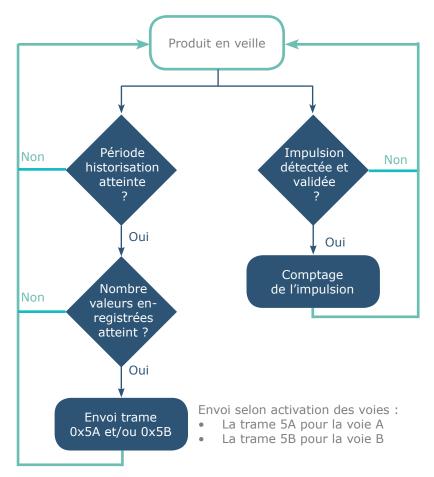
Le produit permet le comptage des entrées impulsionnelles et la transmission périodique des valeurs des compteurs selon le schéma suivant :

Les paramètres associés à ce mode de fonctionnement sont :

- Fréquence de transmission (registre S301)
- Période d'historisation de la donnée (registre S321)
- Activation et configuration des entrées (registre S320)
- Période du timer d'anti-rebond (registres S322)

La liste complète des registres se trouve au paragraphe 3.4.

Exemple:


Registre	Codage de la valeur	Valeur	Résultat
S301	Décimal	1	Nombre de sauvegardes avant envoi
S321	Décimal	43200	Période de sauvegarde des index (43200x2 secondes= 24h)
S320	Hexadécimal	0x39	Voie A :
S322	Hexadécimal	0x57	Anti-rebond: Voie A = 500ms Voie B = 100ms

N.B pour une transmission sans historisation de la donnée S301 doit être égal à 1.

2.2.2 Transmission périodique avec historique

Le produit permet l'accumulation de plusieurs valeurs de compteurs successives avant la transmission périodique de l'ensemble des valeurs selon le schéma suivant :

Les paramètres associés à ce mode de fonctionnement sont :

- Activation et configuration des entrées (registre S320)
- Période d'historisation de la donnée (registre S321)
- Fréquence d'envoi de la trame (registre S301)
- Période du timer d'anti-rebond (registres S322)

La liste complète des registres se trouve au paragraphe 3.4.

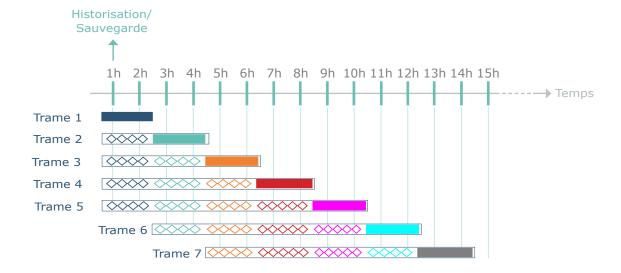
Exemple:

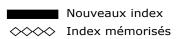
Registre	Codage de la valeur	Valeur	Résultat
S320	Hexadécimal	0x39	Voie A :
S301	Décimal	4	Envoi des trames toutes les 4 historisations (sauvegardes)
S321	Décimal	300	Historisation des Index voie A et voie B toutes les 10 minutes (300x2secondes = 600 secondes)
S322	Hexadécimal	0x57	Anti-rebond: Voie A = 500ms Voie B = 100ms

2.2.3 Transmission périodique avec redondance

Le produit permet également de rajouter de la redondance dans les trames avec historique (cf schéma ci-dessous). Grâce à l'activation de la redondance le produit conservera un certains nombres d'index en mémoire locale pour les envoyer ensuite dans la trame suivante.

Les paramètres associés à ce mode de fonctionnement sont :


- La période d'historisation (registre 321) et la fréquence de transmission (registre 301)
- L'activation ou non des voies et leur configuration (registre 320).
- Le nombre de données qui doivent être répétées d'une trame sur l'autre (registre 340).


Exemple avec redondance:

Registre	Codage de la valeur	Valeur	Résultat
S320	Hexadécimal	0x39	Voie A :
S301	Décimal	2	Envoi des trames toutes les 2 historisations (sauvegardes)
S321	Décimal	1800	Historisation des Index voie A et voie B toutes les heures (1800x2secondes = 60 minutes)
S322	Hexadécimal	0x57	Anti-rebond: Voie A = 500ms Voie B = 100ms
S340	Décimal	4	4 données répétées par trame

Dans cet exemple:

- Une sauvegarde des index est effectuée tous les heures (1800x2secondes = 60 minutes)
- Un envoi est effectué toutes les 2 sauvegardes donc toutes les 2 heures
- Les 2 voies du produit sont activées donc 2 trames seront envoyées (0x5A et 0x5B)
- Lorsqu'il le peut, le produit enverra dans ses trames 2 index relevés toutes les heures et les 4 derniers index mémorisés pour chaque voie



2.2.4 Transmission sur dépassement de seuil de débit

Le produit permet la détection de dépassement d'un seuil de débit pour chaque entrée de comptage selon le schéma suivant :

Le débit correspond au nombre d'impulsions de la période de calcul du débit divisé par cette même période. Il est exprimé en impulsions/heure.

Le message d'alarme (trame 0x47) est émis une seule fois, il n'y a pas de nouvel envoi si le débit repasse au-dessus du seuil tant que l'alarme reste active. L'alarme est automatiquement désactivée après l'émission de la trame quotidienne.

Les paramètres associés à ce mode de fonctionnement sont :

- Activation et configuration des entrées (registre S320)
- Période du timer d'anti-rebond (registres S322)
- Période de calcul du débit (S325)
- Seuils d'alarme (S326 et S327)

La liste complète des registres se trouve au paragraphe 3.4.

Exemple:

Registre	Codage de la valeur	Valeur	Résultat
S320	Hexadécimal	0x39	Voie A: Activée Compteur autre que gaz Entrée fraude activée Voie B: Activée Compteur gaz Entrée fraude désactivée
S322	Hexadécimal	0x57	Anti-rebond: • Voie A = 500ms • Voie B = 100ms
S325	Décimal	60	Période de calcul du débit (voies A et B) = 60min
S326	Décimal	10 000	Seuil de déclenchement de l'alarme de dépassement de débit (voie A) = 10 000 impulsions par heure
S327	Décimal	30 000	Seuil de déclenchement de l'alarme de dépassement de débit (voie B) = 30 000 impulsions par heure

2.2.5 Détection de fraude

Le produit permet la détection de changement d'état sur l'entrée fraude de chaque voie (front montant détecté sur l'entrée normalement maintenue à la masse).

Le produit se réveille régulièrement (selon les périodes définies dans les registres S332 et S334) et vérifie l'état de l'entrée fraude de chacune des voies ayant la détection de fraude active.

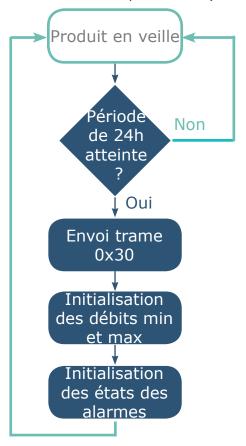
L'alarme fraude est mémorisée s'il y a plusieurs détections successives (configurable dans les registres S333 et S335) et transmise avec la prochaine trame quotidienne.

L'alarme est désactivée automatiquement après l'émission de la trame quotidienne.

Les paramètres associés à ce mode de fonctionnement sont :

- Activation et configuration des entrées (registre S320)
- Période de scrutation de la fraude 1 (registre 332)
- Seuil de détection fraude 1 (registre S333)
- Période de scrutation de la fraude 2 (registre 334)
- Seuil de détection fraude 2 (registre S335)

La liste complète des registres se trouve au paragraphe 3.4.

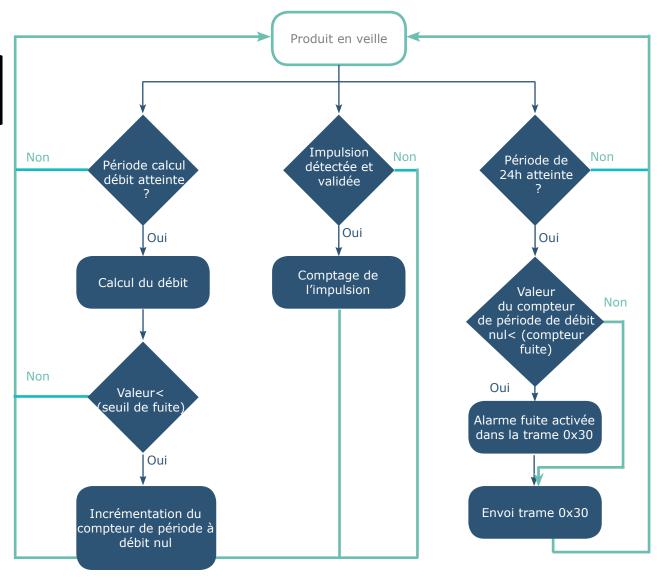


Exemple:

Registre	Codage de la valeur	Valeur	Résultat
S320	Hexadécimal	0x39	Voie A : Activée Compteur autre que gaz Entrée fraude activée Voie B : Activée Compteur gaz Entrée fraude désactivée
S332	Décimal	2	Période de scrutation de la fraude voie A est de 2x10s = 20s
S333	Décimal	3	Seuil de détection fraude voie A = 3 (scrutations positives de la fraude voie A avant déclenchement de l'alarme fraude)
S334	Décimal	2	Période de scrutation de la fraude voie B est de 2x10s = 20s
S335	Décimal	3	Seuil de détection fraude voie B = 3 (scrutations positives de la fraude voie B avant déclenchement de l'alarme fraude)

2.2.6 Transmission d'une trame quotidienne

Le produit transmet toutes les 24 heures une trame quotidienne (0x30) selon le schéma suivant :



La période d'émission de la trame quotidienne est fixe (24 heures) et non configurable.

2.2.7 Détection de fuite

Le produit permet la détection de fuite sur chaque entrée de comptage selon le schéma suivant :

Le débit correspond au nombre d'impulsions de la période de calcul du débit divisé par cette même période. Il est exprimé en impulsions/heure.

La détection de fuite est effectuée par l'analyse d'un nombre d'occurrences (configurable par registre : S330 et S331) où le débit calculé est inférieur à un seuil de fuite (configurable par registre : S328 et S329).

L'alarme fuite associée est mémorisée et transmise avec la prochaine trame quotidienne. L'alarme est désactivée automatiquement après l'émission de la trame quotidienne.

Les paramètres associés à ce mode de fonctionnement sont :

- Activation et configuration des entrées (registre S320)
- Période du timer d'anti-rebond (registres S322)
- Période de calcul du débit (S325)
- Seuils de fuite (S328 et S329)
- Compteurs de période à débit nul (S330 et S331)

La liste complète des registres se trouve au paragraphe 3.4.

Exemple:

Registre	Codage de la valeur	Valeur	Résultat
S320	Hexadécimal	0x39	Voie A: Activée Compteur autre que gaz Entrée fraude activée Voie B: Activée Compteur gaz Entrée fraude désactivée
S322	Hexadécimal	0x57	Anti-rebond: • Voie A = 500ms • Voie B = 100ms
S325	Décimal	60	Période de calcul du débit (voies A et B) = 60min
S328	Décimal	10	Seuil de fuite (voie A) = 10 impulsions par heure
S329	Décimal	0	Seuil de fuite (voie B) = 0 impulsion par heure
S330	Décimal	3	Nombre de périodes quotidiennes en dessous du seuil de fuite (voie A) = 3
S331	Décimal	5	Nombre de périodes quotidiennes en dessous du seuil de fuite (voie B) = 5

Dans cet exemple, toutes les périodes pendant lesquelles le débit sur la voie A est inférieur à 10 impulsions/heure sont considérées comme des périodes de débit nul. Si le nombre total quotidien de périodes de débit nul est inférieur à 3 alors on considère qu'il y a une fuite sur la voie A.

2.3. Fonctionnement des LEDs

Mode	Etat Led Rouge	Etat Led Verte
Produit en mode Park	Éteinte	Éteinte
Processus de détection d'aimant (de 1 à 6 secondes)	Éteinte	ON dès détection de l'aimant à concurrence de 1 seconde
Démarrage du produit (après détection de l'aimant)	Éteinte	Clignotement rapide 6 cycles 100 ms ON / 100 ms OFF
Processus de JOIN (Produit LORA)	Pendant la phase de JOIN : clignotante : 50ms ON / 1 s OFF Si phase de JOIN terminée (JOIN ACCEPT) : clignotante : 50ms ON / 50ms OFF (6x)	Pendant la phase de JOIN : clignotante : 50ms ON / 1 s OFF (juste après LED rouge) Si phase de JOIN terminée (JOIN ACCEPT) : clignotante : 50ms ON / 50ms OFF (6x) (juste avant LED rouge)
Passage en mode commande	Allumée Fixe	Allumée Fixe
Produit en défaut (retour usine)	Fixe	

3. CONFIGURATION DU PRODUIT

La configuration du produit au travers du port micro-USB peut désormais se faire de deux manières : via l'IoT Configurator (application à l'interface conviviale) soit par envoi de commandes AT. Pour ouvrir le boitier du produit se reporter au paragraphe 5.1.

ATTENTION : le branchement du câble USB est consommateur d'énergie et a un impact non négligeable sur l'autonomie du produit.

3.1. Iot Configurator

IoT Configurator est une application d'adeunis® développée pour faciliter la configuration des produits grâce à une interface conviviale. L'IoT Configurator peut s'utiliser directement sur un mobile ou une tablette sous Android ou via un PC Windows.

Compatible Windows 10 seulement et Android 5.0.0 Minimum

Connecter par l'interface micro-USB (cf paragraphe 5.2) présente sur le produit le PC ou le mobile. L'application reconnait automatiquement le produit, télécharge ces paramètres de configuration et permet de configurer le produit rapidement et intuitivement à l'aide des formulaires (menus déroulants, cases à cocher, champs de texte..). L'application permet également la possibilité d'exporter une configuration applicative pour pouvoir la dupliquer sur d'autres produits en quelques clics.

L'IoT Configurator s'enrichit en permanence des nouveautés.

Pour mobile ou tablette :


Application téléchargeable gratuitement sur Google Play https://play.google.com/store/apps/details?id=com.adeunis.IoTConfiguratorApp

Pour ordinateur : directement sur le site internet Adeunis https://www.adeunis.com/telechargements/

3.2. Mode Avancé

3.2.1 Connecter le produit à un ordinateur

Connectez le produit sur une entrée USB d'un ordinateur. Le produit possède un connecteur micro USB Type B (cf paragraphe 5.2). Lors de la connexion le produit doit être reconnu par l'ordinateur comme un périphérique Virtual Com Port (VCP).

Sous Windows: Une vérification du bon fonctionnement de la reconnaissance du produit par l'ordinateur peut être obtenue en consultant le gestionnaire de périphérique. Vous devez voir apparaître lors de la connexion un périphérique série USB avec un numéro de port COM associé.

Si vous ne voyez aucun périphérique de ce type, vous devez installer le driver USB pour ce périphérique, disponible sur notre site internet : https://www.adeunis.com/telechargements/

Sélectionnez:

- Driver USB-STM32 x64, si votre ordinateur est un système 64 bits
- Driver USB-STM32, si votre ordinateur est un système 32 bits

3.2.2 Mode commande

Utiliser un terminal port COM pour communiquer avec le produit. Nous utilisons le soft terminal port COM HERCULES disponible en téléchargement gratuit à l'adresse suivante : http://www.hw-group.com/products/hercules/index_en.html

• Sous Hercules, sélectionner l'onglet «Serial», puis configurer le port série avec les paramètres série suivants :

Para- mètres	Valeur
Débit	115 200 bps
Parité	Aucune
Data	8
Stop Bit	1

- Sélectionner le port série sur lequel le périphérique s'est créé sous Windows.
- Cliquer sur le bouton «Open» pour ouvrir le port série.

NOTE INFORMATION: Si le port com est correctement ouvert, Hercules vous indique «Serial port COM3 opened».

Sinon vous avez «Serial port com opening error», soit le port com est déjà ouvert sur une autre application, soit il n'existe pas.

Tapez '+++' pour passer le produit en mode de configuration.

Sur le terminal port com, vous devez également avoir un retour d'information «CM» pour Command Mode.

L'envoi de caractère sur Hercule s'affiche en magenta et la réception en noir. Si vous ne voyez pas les caractères d'envoi, c'est probablement parce que l'ECHO n'est pas actif sur le logiciel. Activer l'option dans le menu accessible par un clic droit dans la fenêtre de visualisation.

```
Received/Sent data

Serial port COM3 opened
+++CONNECTING...
CM
```

3.2.3 Commande AT

Une commande débute avec les 2 caractères ASCII : « AT », suivis d'un ou plusieurs caractères et données (voir ci-après la syntaxe des commandes AT disponibles sur le modem).

Chaque commande doit se terminer par un « CR » ou « CR » «LF », les deux possibilités sont acceptées. (CR signifie : Carriage Return, LF signifie : Line Feed).

À la réception d'une commande, le modem retourne :

- « Les données » < cr > < lf > , pour une commande de lecture type ATS < n > ? , AT/S ou AT/V.
- « O » <cr><lf>, pour toutes les autres commandes lorsque celle-ci est acceptée.
- « E » <cr><lf>, s'il refuse la commande car erreur de syntaxe, commande inconnue, registre inconnu, paramètre invalide,
 - « CM » <cr><lf>, s'il accepte l'entrée en mode commande

Tableau des commandes AT:

Commande	Description	Exemple de réponse
+++	Entrée en mode commande	«CM» <cr><lf></lf></cr>
ATPIN <pin></pin>	Donne accès aux commandes AT si le registre S304 est différent de 0	
AT/V	Affiche la version du firmware de l'application et la version du firmware du module RTU	APPx_Vxx.xx.xx:RTUx_Vyy.yy.yy
AT/N	Affiche le réseau utilisé	"LoRa" ou "SIGFOX" ou «WMBUS»
AT/ARF	Affiche la référence du produit	«ARF8240CAA\r\n»
ATS <n>?</n>	Retourne le contenu du regitre <n></n>	S <n>=<y><cr><lf> avec <y> comme contenu de registre</y></lf></cr></y></n>
AT/S	Affiche tous les registres	/
ATS <n>=<m></m></n>	Attribue la valeur <m> au registre <n></n></m>	«O» <cr><lf> si ok, «E»<cr><lf> si er- reur, «W»<cr><lf> si erreur de cohérence</lf></cr></lf></cr></lf></cr>
AT&W	Sauvegarde la nouvelle configuration	«O» <cr><lf>, «E»<cr><lf> si erreur de cohérence</lf></cr></lf></cr>
ATO	Permet de sortir du mode commande	«O» <cr><lf>, «E»<cr><lf> si erreur de cohérence</lf></cr></lf></cr>
ATT63 PROVIDER	Mot de passe du fournisseur	«O» <cr><lf></lf></cr>

FR

Registres fonction 3.2.4

La liste des registres ci-dessous permet de modifier le comportement applicatif du produit.

Registre	Taille (octets)	Description	Codage	Détails
\$300	N/A	Période de transmission de la trame quotidienne		Valeur ignorée, la période est fixée à 24 heures (non configurable)
S301	2	Fréquence de transmission des données de comptage	Décimal	Défaut : 1 Min/max : 0 à 65535 0 : désactive le mode périodique 1 : envoi périodique sans historique X (>1) : envoi périodique avec historique et envoi toutes les X sauvegardes d'index
S303	1	Acquittement des trames montantes	Décimal	Défaut : 0 (désactivé) Min/max : 0 à 1 La valeur 1 active la demande d'acquittement
\$304	2	Code PIN	Décimal	Défaut : 0 (désactivé) Min/max : 0 à 9999 Code PIN utilisé avec la commande ATPIN. La valeur 0 désactive le code PIN. ATTENTION : le code PIN permet la protection de la configuration du produit. Après 3 tentatives erronées le produit est bloqué. Pour le débloquer, appeler le service support.
S306	1	Mode de fonctionnement	Décimal	Défaut : 0 Permet de passer le produit dans l'un des modes suivants : 0: mode PARC 1: mode PRODUCTION 2 et 3: réservé
\$320	1	Configuration des entrées (voies A et B)	Hexadécimal	Défaut : 0x11 Pour la voie A : Bit 0 : Activation voie A Valeur 0 : voie désactivée Valeur 1 : voie activée Bit 1 : Type compteur voie A (activation pull-up) Valeur 0 : compteur autre que Gaz, pull-up désactivée Valeur 1 : compteur Gaz, pull-up activée Bit 2 : Réservé Bit 3 : Entrée fraude voie A Valeur 0 : désactivée Valeur 1 : activée Pour la voie B : Bit 4 : Activation voie B Valeur 0 : voie désactivée Valeur 1 : voie activée Valeur 1 : voie activée Bit 5 : Type compteur voie A (activation pull-up) Valeur 0 : compteur autre que Gaz, pull-up désactivée Valeur 1 : compteur Gaz, pull-up activée Bit 6 : Réservé Bit 7 : Entrée fraude voie B Valeur 0 : désactivée Valeur 1 : activée
S321	2	Période d'historisation des index	Décimal	Défaut : 43200 (24h) Unité : x 2 secondes

ГΝ	D
	\Box

S322	1	Période du filtre anti-rebond / largeur minimum des impulsions comptées (voies A et B)	Hexadécimal	Défaut : 0x22 Bits 0 à 3 : période du filtre anti-rebond de la voie A Valeur 0: désactivé Valeur 1: 1 ms Valeur 3: 20 ms Valeur 4: 50 ms Valeur 5: 100 ms Valeur 6: 200 ms Valeur 7: 500 ms Valeur 8: 1 s Valeur 9: 2 s Valeur B: 10 s Valeur C à F : réservées Bits 4 à 7 : période du filtre anti-rebond de la voie B Valeur 1: 1 ms Valeur 2: 10 ms Valeur 3: 20 ms Valeur 3: 20 ms Valeur 3: 20 ms Valeur 3: 5 ms Valeur 3: 5 ms Valeur 4: 50 ms Valeur 5: 100 ms Valeur 5: 100 ms Valeur 7: 500 ms Valeur 6: 200 ms Valeur 7: 500 ms Valeur 7: 500 ms Valeur 8: 1 s Valeur 8: 1 s Valeur 9: 2 s Valeur A: 5 s
S323	4	Valeur courante du compteur voie A	Décimal	Défaut : 0 Min/max : 0 à (2³²-¹) Unité : nombre d'impulsions En mode commande, il est possible de venir écrire une nouvelle valeur dans ce registre (par exemple une valeur d'initialisation, une valeur d'ajustement).
S324	4	Valeur courante du compteur voie B	Décimal	Défaut : 0 Min/max : 0 à (2 ³²⁻¹) Unité : nombre d'impulsions En mode commande, il est possible de venir écrire une nouvelle valeur dans ce registre (par exemple une valeur d'ajustement).
S325	2	Période de calcul du débit (voies A et B)	Décimal	Défaut : 60 Min/max : 1 à 1440 Unité : minutes
S326	2	Seuil de déclenchement de l'alarme de dépassement de débit (voie A)	Décimal	Défaut : 0 (désactivé) Min/max : 0 à 65535 Unité : impulsions par heure
S327	2	Seuil de déclenchement de l'alarme de dépassement de débit (voie B)	Décimal	Défaut : 0 (désactivé) Min/max : 0 à 65535 Unité : impulsions par heure
S328	2	Seuil de fuite (voie A)	Décimal	Défaut : 0 Min/max : 0 à 65535 Unité : impulsions par heure
S329	2	Seuil de fuite (voie B)	Décimal	Défaut : 0 Min/max : 0 à 65535 Unité : impulsions par heure

S330	2	Nombre de périodes quotidiennes en dessous du seuil de fuite (voie A)	Décimal	Défaut : 0 (désactivé) Min/max : 0 à 1440 Unité : aucune La multiplication de ce registre par la période de mesure de débit doit être inférieure à 24 heures faute de quoi le produit sera perpétuellement en alarme
S331	2	Nombre de périodes quotidiennes en dessous du seuil de fuite (voie B)	Décimal	Défaut : 0 (désactivé) Min/max : 0 à 1440 Unité : aucune La multiplication de ce registre par la période de mesure de débit doit être inférieure à 24 heures faute de quoi le produit sera perpétuellement en alarme
S332	1	Période de scrutation de la fraude voie A	Décimal	Défaut : 2 Min/Max : 1 à 255 Unité : x10 secondes
S333	1	Seuil de détection fraude voie A	Décimal	Défaut : 3 Min/Max : 1 à 255 Unité : Aucune Nombre de scrutations positives de la fraude voie A avant déclenche- ment de l'alarme fraude
S334	1	Période de scrutation de la fraude voie B	Décimal	Défaut : 2 Min/Max : 1 à 255 Unité : x10 secondes
S335	1	Seuil de détection fraude voie B	Décimal	Défaut : 3 Min/Max : 1 à 255 Unité : Aucune Nombre de scrutations positives de la fraude voie B avant déclenche- ment de l'alarme fraude
S340	1	Nombre d'échantillons redon- dants par trame	Decimal	Default : 0 Min/Max: 0-255

3.2.5 Registres réseau

La liste des registres ci-dessous permet de modifier les paramètres réseau du produit. Cette liste est accessible en mode PROVIDER suite à l'exécution de la commande ATT63 PROVIDER. Ces registres doivent être manipulés avec précaution car susceptibles d'engendrer des problèmes de communication ou de non-respect de la législation en vigueur.

Registre	Taille (octets)	Description	Codage	Détails	
S201	4	Facteur d'étalement (SF) par défaut	Décimal	Défaut : 12 (868) ou 10 (915) selon la référence du produit Min/max : 4 à 12 Unité : aucune	
S202	4	Largeur de bande	Décimal	Défaut :0 Possibilités : • 0=125kHz • 1=250kHz • 2=500kHz	
S205	4	Puissance d'émission	Décimal	Défaut : 14 Min/max : 2 à 14 Unité : dBm	
S206	4	Facteur d'étalement (SF) maximum	Décimal	Défaut : 12 (868) ou 10 (915) selon la référence du produit Min/max : 5 à 12 Unité : aucune	
S207	4	Paramètres ADR : ADR_ACK_LIMIT	Décimal	Défaut : 64 Min/max : 1 à 64 Unité : aucune	

S208	4	Paramètres ADR : ADR_ACK_DELAY	Décimal	Défaut : 32 Min/max : 1 à 32 Unité : aucune
S214	4	LORA APP-EUI (pre- mière partie – MSB)	Hexadécimal	Défaut : 0 Clé codée sur 16 caractères. Chaque registre contient une partie de la clé.
S215	4	LORA APP-EUI (deu- xième partie – LSB)	Hexadécimal	Utilisée lors de la phase de JOIN en mode OTAA Exemple : APP-EUI = 0018B244 41524632 • \$214 = 0018B244 • \$215 = 41524632
S216	4	LORA APP-KEY (première partie – MSB)	Hexadécimal	Défaut : 0 Clé codée sur 32 caractères octets. Chacun des 4 registres contient 8 caractères. Utilisée lors de la phase de JOIN en mode OTAA
S217	4	LORA APP-KEY (deuxième partie – MID MSB)	Hexadécimal	Exemple: APP-KEY = 0018B244 41524632 0018B200 00000912 • S216 = 0018B244
S218	4	LORA APP-KEY (troisième partie – MID LSB)	Hexadécimal	 \$216 = 00166244 \$217 = 41524632 \$218 = 0018B200 \$219 = 00000912
S219	4	LORA APP-KEY (quatrième partie – LSB)	Hexadécimal	
S220	4	Options LoRaWAN	Hexadécimal	Défaut : 1 Bit 0 : Activation de l'ADR ON(1)/OFF(0) Bit 1 : Réservé Bit 2 : DUTYCYCLE ON(1)/DUTYCYCLE OFF(0) Bit 3 à 7 : Réservés ATTENTION : La désactivation du Duty Cycle peut entraîner selon l'usage du produit un non-respect des conditions d'utilisation de la bande de fréquence donc une violation de la réglementation en vigueur. Dans le cas de la désactivation du Duty Cycle la responsabilité est transférée à l'utilisateur.
S221	4	Mode d'activation	Décimal	Défaut : 1 Choix: (voir NOTE1 après le tableau) O : ABP 1: OTAA
S222	4	LORA NWK_SKEY (première partie – MSB)	Hexadécimal	Défaut : 0 Paramètre codé sur 16 octets. Chacun des 4 registres contient 4 octets.
S223	4	LORA NWK_SKEY (deuxième partie - MID MSB)	Hexadécimal	
S224	4	LORA NWK_SKEY (troisième partie - MID LSB)	Hexadécimal	
S225	4	LORA NWK_SKEY (quatrième partie – LSB)	Hexadécimal	

S226	4	LORA APP_SKEY (première partie – MSB)	Hexadécimal	Défaut : 0 Paramètre codé sur 16 octets. Chacun des 4 registres contient 4 octets.
S227	4	LORA APP_SKEY (deuxième partie - MID MSB)	Hexadécimal	
S228	4	LORA APP_SKEY (troisième partie - MID LSB)	Hexadécimal	
S229	4	LORA APP_SKEY (quatrième partie – LSB)	Hexadécimal	
S250	4	Configuration Canal 0	Décimal (868) Hexadécimal (915)	Défaut : 1 Canal de fonctionnement obligatoire LoRaWAN Cette valeur ne peut être modifiée
S251	4	Configuration Canal 1	Décimal (868) Hexadécimal (915)	Défaut : 1 (868) ; 0 (915) Canal de fonctionnement obligatoire LoRaWAN Cette valeur ne peut être modifiée
S252	4	Configuration Canal 2	Décimal (868) Hexadécimal (915)	Défaut : 1 Canal de fonctionnement obligatoire LoRaWAN Cette valeur ne peut être modifiée
S253	4	Configuration Canal 3	Décimal (868) Hexadécimal (915)	Défaut : 0 (868) ; 1 (915) 0 : Canal désactivé Autre : Configuration utilisateur (NOTE2)
S254	4	Configuration Canal 4	Décimal (868) Hexadécimal (915)	Défaut : 0 0 : Canal désactivé Autre : Configuration utilisateur (NOTE2)
S255	4	Configuration Canal 5	Décimal (868) Hexadécimal (915)	Défaut : 0 (868) ; 1 (915) 0 : Canal désactivé Autre : Configuration utilisateur (NOTE2)
S256	4	Configuration Canal 6	Décimal (868) Hexadécimal (915)	Défaut : 0 0 : Canal désactivé Autre : Configuration utilisateur (NOTE2)
S257	4	Configuration RX2	Décimal (868) Hexadécimal (915)	Défaut : 1 0 : Canal désactivé 1 : Configuration par défaut LoRaWAN Autre : Configuration utilisateur
S258	4	Type de bande (uniquement en 915)	Décimal	Défaut : 3 Min/max : 0 à 3
S280	4	NETWORK ID	Hexadécimal	Défaut 0 Lecture seule
S281	4	DEVICE ADDRESS	Hexadécimal	Défaut : 0

NOTE 1:

Le mode «Over The Air Activation» (OTAA), utilise une phase de JOIN avant de pouvoir émettre sur le réseau. Ce mode utilise les codes APP_EUI (S214 et S215) et APP_KEY (S216 à S219) pendant cette phase pour créer les clés de communication réseau.

Une fois cette phase terminée, les codes APP_sKEY, NWK_sKEY et DEVICE ADDRESS seront présents dans les registres correspondants.

Une nouvelle phase de JOIN est démarrée à chaque fois que le produit sort du mode commande, qu'un reset est effectué ou que le produit est mis sous tension.

Codes:

- FR
- APP_EUI Identifiant d'application global (fourni par adeunis®)
- APP_KEY Clé d'application du device (fourni par adeunis®)

Le mode «Activation By Personalization» (ABP), n'a pas de phase de JOIN, il émet directement sur le réseau en utilisant directement les codes NWK_sKEY (S222 à S225), APP_sKEY (S226 à S229) et DEVICE ADDRESS (S281) pour communiquer.

Codes:

- NWK_sKEY Clé de session réseau (fourni par adeunis®)
- APP_sKEY Clé de session applicative (fourni par adeunis®)
- DEVICE ADDRESS Adresse du device dans le réseau (fourni par l'utilisateur)

NOTE 2:

Par défaut, les canaux 0 à 2 utilisent les paramètres par défaut du réseau LoRaWAN, les 4 autres canaux sont inactifs. Une valeur du registre différente de 0 ou 1 permet de configurer le canal comme suit :

Bit	7	6	5	4	3	2	1	0
Descrip- tion		Fréquence du canal						DR Min
Exemple				5	3			

Valeur Data Rate (DR)	Description			
0	SF12			
1	SF11			
2	SF10			
3	SF9			
4	SF8			
5	SF7			
6	SF7 – BW 250kHz			
7	FSK 50 kps			

L'exemple donné permet de configurer une fréquence de 868.1 Hz et autorise un SF de 7 à 9. La commande à envoyer pour réaliser cette opération est : ATS250=86810053<cr>

4. DESCRIPTION DES TRAMES

4.1. Trames montantes (uplink)

Les trames montantes du produit vers le réseau (uplink) ont une taille variable selon les informations transmises.

4.1.1 Octets fixes

Les deux premiers octets de la trame sont systématiquement dédiés pour indiquer le code de la trame et le statut comme présenté ci-dessous :

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							

4.1.1.01 Code byte

Cet octet contient le code associé à la trame pour faciliter le décodage de celle-ci par le système d'information.

4.1.1.02 Status byte

L'octet de statut (status byte) est décomposé de la manière suivante :

Alarm Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Frame Counter		Réservé	Incohé- rence de config	HW	Low Bat	Config	
No Error				X	0	0	0	0
Configuration done				Х	0	0	0	1
Low bat	0x	00 to 0x	07	X	0	0	1	0
HW Error			Х	0	1	0	0	
Incoherence config			Х	1	0	0	0	

Détails des champs :

- Frame counter : compteur de trames, il s'incrémente à chaque émission et permet rapidement de voir si une trame a été perdue. Il compte de 0 à 7 avant de reboucler.
- Config done: bit à 1 si une configuration a été réalisée lors de la dernière trame descendante, sinon 0. Ce bit retourne à 0 dès la trame suivante.
- Low Bat : bit à 1 si la tension batterie est inférieure à 2,5V (défini dans registre S522), sinon 0. Cette information reste permanente.
- HW : ce bit est mis à 1 lorsqu'une erreur matérielle s'est produite, par exemple un problème d'écriture en EEPROM, un problème de lecture sur l'ADC...Le produit doit être retourné en SAV.
- Incohérence config : ce bit est à 1 lorsqu'une incohérence dans la configuration entraine la perte de certains relevés en mode périodique car la payload est insuffisante.

Exemple:

Une valeur de l'octet statut égale 0xA3(= 10100011 en binaire) donne :

- Bit 7 à 5 = 101 = 0x05 soit un compteur de trame à 5
- Bit 4 à 0 = 00011 en binaire soit la validation de la configuration et une alarme batterie.

4.1.2 Trames d'information sur la configuration du produit

Suite à la réception d'une trame descendante (downlink) avec le code 0x01 ou lors du passage en mode exploitation (sortie du mode PARC ou COMMANDE), la trame suivante (0x10) représentant la configuration applicative du produit est transmise :

0	1	2	3 et 4	5	6 et 7	8	9 et 10	11 et 12	13 et 14
Code	Status		PAYLOAD						
0x10	Cf Status	S306	S301	S320	S321	S322	S325	S326	S327
0x10	0xA3	0x01	0x003C	0x39	0x012C	0x57	0x003C	0x2710	0x7530

15 et 16	17 et 18	19 et 20	21 et 22	23	24	25	26	27	
PAYLOAD									
S328	S329	S330	S331	S332	S333	S334	S335	S340	
0x000A	0x0000	0x0003	0x0005	0x01	0x03	0x06	0x0A	0x0D	

Sa taille est de 27 octets.

Description de la trame :

- Octet 2: S306, mode du produit (PARC, STANDARD)
- Octets 3 et 4 : S301, fréquence de la transmission, exprimée en nombre d'historisations
- Octet 5 : S320, configuration des entrées (voies A et B)
- Octet 6 et 7 : S321, période d'historisation (x2 secondes)
- Octet 8 : S322, période du timer de filtrage anti-rebond des voies A et B
- Octets 9 et 10 : S325, période de calcul du débit (en minute)
- Octets 11 et 12 : S326, seuil de détection de sur-débit de la voie A
- Octets 13 et 14 : S327, seuil de détection de sur-débit de la voie B
- Octets 15 et 16 : S328, seuil de détection de fuite de la voie A
- Octets 17 et 18 : S329, seuil de détection de fuite de la voie B
- Octets 19 et 20 : S330, nombre de périodes quotidiennes en dessous du seuil de fuite (voie A)
- Octets 21 et 22 : S331, nombre de périodes quotidiennes en dessous du seuil de fuite (voie B)
- Octet 23 : S332, période de scrutation de la fraude 1
- Octet 24 : S333, nombre de scrutations de la fraude nécessaires avant envoi de l'alarme fraude 1
- Octet 25 : S334, période de scrutation de la fraude 2
- Octet 26 : S335, nombre de scrutations de la fraude nécessaires avant envoi de l'alarme fraude 2
- Octet 27 : S340, nombre d'échantillons redondants par trame

- Octet 2: S306=0x01: mode PRODUCTION en cours
- Octets 3 et 4 : S301=0x0002 = 2 en décimal :1 envoi toutes les 2 sauvegardes/historisations.
- Octet 5 : S320 = 0x39 : configuration des entrées (voies A et B) :
 - Voie A :activée, compteur autre que gaz et entrée fraude activée
 - Voie B :activée, compteur gaz et entrée fraude désactivée
- Octet 6 : S321=0x012C=300 (décimal), soit une historisation toutes les 10 minutes (300x2sec=600)
- Octet 7: S322=0x57, anti-rebond Voie A = 500ms et Voie B = 100ms
- Octets 8 et 9 : registre 325=0x003C=60 en décimal, période de calcul du débit égale à 60min
- Octets 10 et 11 : S326=0x2710=10 000 en décimal, seuil de détection de sur-débit de la voie A égale à 10 000 impulsions par heure
- Octets 12 et 13 : S327=0x7530=30 000 en décimal, seuil de détection de sur-débit de la voie B égale à 30 000 impulsions par heure
- Octets 14 et 15 : S328=0x000A=10 en décimal, seuil de détection de fuite de la voie A réglée à 10 impulsions par heure
- Octets 16 et 17 : S329=0x0000, seuil de détection de fuite de la voie B réglé à 0 impulsion par heure
- \bullet Octets 18 et 19 : S330=0x0003, nombre de périodes quotidiennes en dessous du seuil de fuite (voie A) égale à 3
- Octets 20 et 21 : S331=0x0005, nombre de périodes quotidiennes en dessous du seuil de fuite (voie B) égale à 5

4.1.3 Trame d'information sur la configuration du réseau

Suite à la réception d'une trame descendante (downlink) avec le code 0x02 ou lors du passage en mode exploitation (sortie du mode PARC ou COMMANDE), la trame suivante (0x20) représentant la configuration réseau du produit est transmise :

0	1	2	3	
Code	Status	PAYLOAD		
0x20	Cf Status	S220	S221	
0x20	0x20 0xA3		0x01	

Sa taille est de 4 octets.

Description de la trame :

Octet 2 : registre S220 : Activation de l'Adaptative Data Rate

Octet 3: registre S221: Mode de connexion

Dans l'exemple en gris cela donne :

Octet 2=0x05 : l'Adaptative Data Rate est activé

Octet 3=0x01: mode de connexion OTAA

4.1.4 Trame quotidienne

Cette trame (0x30) est émise 24 heures après le démarrage de l'application ou après l'envoi de la trame quotidienne précédente.

0	1	2	3 à 4	5 à 6	7 à 8	9 à 10	
Code	Status	PAYLOAD					
0x30	Cf Status	Alarmes	Débit max voie A	Débit max voie B	Débit min voie A	Débit min voie B	
0x30	0xA3	0x19	0x310A	0x12C4	0x0010	0x0000	

Sa taille est de 11 octets.

Description de la trame :

- Octet 2 : Etat des différentes alarmes (bit à 1 si l'alarme est active, à 0 sinon) :
 - Bit 0 Sur-débit sur la voie A
 - Bit 1 Sur-débit sur la voie B
 - Bit 2 Fraude détectée sur la voie A
 - Bit 3 Fraude détectée sur la voie B
 - Bit 4 Fuite détectée sur la voie A
 - Bit 5 Fuite détectée sur la voie B
 - Bit 6/7 Réservés
- Octets 3 à 4 : Débit maximum mesuré sur la voie A au cours des dernières 24 heures.
- Octets 5 à 6 : Débit maximum mesuré sur la voie B au cours des dernières 24 heures.
- Octets 7 à 8 : Débit minimum mesuré sur la voie A au cours des dernières 24 heures.
- Octets 9 à 10 : Débit minimum mesuré sur la voie B au cours des dernières 24 heures.

- Octet 2 : Alarmes = 0x19 soit (00011001) en binaire ce qu'y donne :
 - Bit 0 = 1 Sur-débit sur la voie A
 - Bit 1 = 0 Pas de sur-débit sur la voie B
 - Bit 2 = 0 Pas de fraude détectée sur la voie A
 - Bit 3 = 1 Fraude détectée sur la voie B
 - Bit 4 = 1 Fuite détectée sur la voie A
 - Bit 5 = 0 Pas de fuite détectée sur la voie B
 - Bit 6/7 Réservés
- Octets 3 à 4 : Débit maximum mesuré sur la voie A au cours des dernières 24 heures = 0x310A soit 12554 impulsions par heure.

- FR
- Octets 5 à 6 : Débit maximum mesuré sur la voie B au cours des dernières 24 heures = 0x12C4 soit 4804 impulsions par heure.
- Octets 7 à 8 : Débit minimum mesuré sur la voie A au cours des dernières 24 heures = 0x0010 soit 16 impulsions par heure.
- Octets 9 à 10 : Débit minimum mesuré sur la voie B au cours des dernières 24 heures = 0x0000 soit 0 impulsion par heure.

Pour rappel, les alarmes sont désactivées automatiquement après l'émission de la trame quotidienne.

4.1.5 Trame de réponse à une demande de valeur de registre(s)

Cette trame (0x31) est émise suite à la réception d'une trame descendante (downlink) avec le code 0x40 (voir paragraphe 4.2.4). Elle contient les valeurs des registres demandés dans la trame descendante 0x40.

Exemple:

Trame envoyée vers le produit (downlink) :

			1 \					
	0	1	2	3	4	5		N
	Code	PAYLOAD						
I	0x40	CONF ID1	CONF ID2	CONF ID3	X	X	X	CONF IDn

Les champs CONF IDX (8bits) représentent les indices des registres à envoyer. Le registre correspondant est 300 + valeur de CONF IDX.

• Trame transmise en retour par le produit :

0	1	2	3	4	5		N	
Code		PAYLOAD						
0x31	Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	X	

Dans cet exemple : CONF ID1 est un registre de 2 octets, CONF ID2 de 1 octet et CONF ID3 de 2 octets

Si une erreur est détectée dans la requête, la trame 0x31 renvoyée sera vide.

4.1.6 Trame de données périodique

Cette trame (0x46) est émise à la fréquence définie par le registre S321 et seulement si S301=1.

0	1	2 à 5	6 à 9	
Code	Status	PAYLOAD		
0x46	0x46 Cf Status		Compteur voie B	
0x46	0x46 0xA3		0x0000F74A	

Sa taille est de 10 octets.

Description de la trame :

- Octets 2 à 5 : valeur du compteur de la voie A au moment de l'envoi de la trame
- Octets 6 à 9 : valeur du compteur de la voie B au moment de l'envoi de la trame

- Octets 2 à 5 : compteur voie A = 0x00015C4F soit 89 167 impulsions
- Octets 6 à 9 : compteur voie B = 0x0000F74A soit 63 306 impulsions

4.1.7 Trame d'alarme

Cette trame (0x47) est émise si le débit mesuré sur une des voies dépasse le seuil configuré pour cette voie (registres S326 et S327).

0	1	2 à 3	4 à 5	
Code	Status	PAYLOAD		
0x47	0x47 Cf Status		Débit mesuré voie B	
0x47	0xA3	0x2904	0x206C	

Sa taille est de 6 octets.

Description de la trame :

- Octets 2 à 3 : Débit mesuré sur la voie A au moment de la détection du sur-débit, en impulsions/ heure.
- Octets 4 à 5 : Débit mesuré sur la voie B au moment de la détection du sur-débit, en impulsions/heure.

Dans l'exemple en gris cela donne :

- Octets 2 à 3 : Débit mesuré sur la voie A au moment de la détection du sur-débit = 0x2904 soit 10 500 impulsions/heure
- Octets 4 à 5 : Débit mesuré sur la voie B au moment de la détection du sur-débit = 0x206C soit 8 300 impulsions/heure

4.1.8 Trame de données périodique avec historique

Ces trames (0x5A et 0x5B) sont émises si les voies correspondantes sont activées (S320) et à la période définie par les registres S321 et S301.

0	1	2 à 5	6 et 7	8 et 9		48 et 49	
Code	Status	PAYLOAD					
0x5A / 0x5B	Cf Status	Index à t0	Variation de l'index entre t0 et t-1	Variation de l'index entre t-1 et t-2		Variation de l'index entre t-21 et t-22	
0x5A	0xA3	0x00015C4F	0xE6F3	0xF74A		0xF2AD	

ATTENTION : En LoRaWAN, la capacité max de la trame est de 23 relevés d'index (soit S301<24 ou combinaison de S301+S340<24 si de la redondance est activée). Si S301 ou S301+S340>23, le bit de warning apparaîtra dans l'octet statut. Dans ce cas là la trame enverra les relevés les plus récents au détriment des plus anciens qui seront perdus.

Description de la trame :

- Octets 2 à 5 : index du compteur à t0
- Octets 6 et 7 : variation de l'index du compteur entre t0 et t-1
- Octets 8 et 9 : variation de l'index du compteur entre t-1 et t-2
- ...
- Octets 48 et 49 : variation de l'index du compteur entre t-21 et t-22

- Octets 0 = 0x5A: cette trame concerne la voie A du produit
- Octets 2 à $5 = 0 \times 00015 \text{C4F}$ soit 89 167 impulsions à t0
- Octets 6 et 7 = 0xE6F3 soit 59 123 impulsions de différence entre t0 et t-1
- Octets 8 et 9 = 0xF74A soit 63 306 impulsions de différence entre t-1 et t-2
- ..
- Octets 48 et 49 = 0xF2AD soit 62 125 impulsions de différence entre t-21 et t-22

FR

4.1.9 Trame de réponse suite à demande de modification de registres

A la suite de la réception d'une trame 0x41, la trame 0x33 est envoyée. Elle indique que le downlink a correctement été reçu et donne les information quant au statut de l'action associée.

0	1	2 3 et 4			
Code	Status	PAYLOAD			
0x33	Cf Status	Statut de la requête	Registre concerné		
0x33	0xA3	0x02	0x012D		

Sa taille est de 5 octets.

Description de la trame :

- Octet 2 : Statut de la requête:
 - -0x00 = N/A
 - 0x01 = succès de la requête
 - 0x02 = succès de la requête, le registre était déjà à cette valeur
 - 0x03 = erreur, incohérence de la requête
 - -0x04 = erreur, registre invalide
 - -0x05 = erreur, valeur incorrecte
 - 0x06 = erreur, valeur tronquée
 - 0x07 = erreur, accès non autorisé
 - -0x08 = erreur, autre raison
- Octets 3 et 4 : Registre concerné par la requête (si statut de la requête différent de 0x01)

Dans l'exemple en gris cela donne :

- Octets 2 : 0x02 = succès de la requête
- Octets 3 et 4 : 0x012D = 301 en décimal, la requête concerne le registre S301

4.1.10 Synthèse des conditions d'envoi des trames montantes

Le tableau ci-après résume les conditions d'envoi des différentes trames montantes :

Code	Description	Scenarii d'envoi
0x10	Trames d'information sur la configuration du produit	Démarrage du produit Sortie du mode configuration (AT commande) Réception d'une trame descendante 0x01
0x20	Trames d'information sur la configuration du réseau	Démarrage du produit Sortie du mode configuration (AT commande) Réception d'une trame descendante 0x02
0x30	Trame quotidienne	24 heures se sont écoulées depuis le démarrage ou le dernier envoi de cette trame
0x31	Trame de réponse à une demande de valeur de registre(s)	Réception d'une trame descendante 0x40
0x33	Trame de réponse suite à de- mande de modification registre	Réception d'une trame descendante 0x41
0x46	Trame de données périodiques	Périodiquement (défini par le registre S321) et si fréquence d'envoi à 1 sauvegarde (défini par S301)
0x47	Trame d'alarme	Dépassement du seuil d'alarme de sur-débit sur une des deux voies (envoi seulement si le contrôle de sur-débit est activé en écrivant une valeur différente de zéro dans le registre S326 ou S327).
0x5A 0x5B	Trame de données périodiques avec historique	Période d'envoi atteinte (selon la période de sauvegarde et le nombre de sauvegarde par trame déterminés par les registres S321 et S301) Trame 0x5A pour la voie A Trame 0x5B pour la voie B

4.2. Trames descendantes (downlink)

La technologie LoRaWAN permet de transmettre des informations au produit depuis le réseau (downlink).

La classe A de la spécification LoRaWAN permet au produit de recevoir des informations du réseau en proposant deux fenêtres d'écoute après chaque communication montante (trame d'uplink).

4.2.1 Trame de demande de la configuration du produit

Cette trame permet de faire savoir au produit via le réseau qu'il doit réémettre la trame montante de configuration du produit (0x10).

0	1	2	3	4	5	6	7
Code	PAYLOAD						
0x01	0x00	0x00	0x00	0x00	0x00	0x00	0x00

4.2.2 Trame de demande de la configuration du réseau

Cette trame permet de faire savoir au produit via le réseau qu'il doit réémettre la trame montante de configuration du réseau (0x20).

0	1	2	3	4	5	6	7
Code	PAYLOAD						
0x02	0x00	0x00	0x00	0x00	0x00	0x00	0x00

4.2.3 Trame d'ajout d'un décalage aux compteurs d'impulsion (offset)

Cette trame permet d'ajouter un décalage à la valeur du compteur de l'une ou l'autre des deux voies.

0	1 à 4	5 à 8	
Code			
0x03	Offset voie A	Offset voie B	
0x03	0x00000015	0x00000050	

Sa taille est de 9 octets.

Description de la trame :

- Octet 1 à 4 : Offset voie A : nombre d'impulsions à ajouter à l'index courant du compteur de la voie A (32 bits non signé, octet de poids fort en premier).
- Octet 5 à 8 : Offset voie B : nombre d'impulsions à ajouter à l'index courant du compteur de la voie B (32 bits non signé, octet de poids fort en premier).

Dans l'exemple en gris cela donne :

Description de la trame :

- Octet 1 à 4 =0x00000015 soit 21 impulsions à ajouter au compteur de la voie A
- Octet 5 à 8 =0x00000050 soit 80 impulsions à ajouter au compteur de la voie B

FR

4.2.4 Trame de demande de valeur de registres spécifiques

Cette trame (0x40) permet de faire savoir au produit via le réseau qu'il doit émettre les valeurs des registres demandés.

0	1	2	3	4	5		N
Code	PAYLOAD						
0x40	CONF ID1	CONF ID2	CONF ID3	CONF ID4	CONF ID5		CONF IDn

Description de la trame :

• Octets 1 à N : CONF IDX (8bits): indice du registre à envoyer. Le registre correspondant est 300 + valeur de CONF IDX.

Par exemple, si CONF ID1 =0x14=20 en décimal, le transmetteur enverra en retour la valeur du registre 320.

L'utilisateur peut spécifier plusieurs CONF ID dans sa trame de downlink mais il est à sa charge de vérifier que selon le protocole, la taille des données disponibles dans une trame descendante sera suffisamment grande pour contenir l'ensemble des données souhaitées. Dans le cas contraire, l'application enverra seulement les premières valeurs.

La trame descendante associée porte le code 0x31 (voir paragraphe 4.1.5).

0	1	2	3	4	5	•••	N
Code	PAYLOAD						
0x31	Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	X

Dans cet exemple : CONF ID1 est un registre de 2 octets, CONF ID2 de 1 octet et CONF ID3 de 2 octets

Si une erreur est détectée dans la requête, la trame 0x31 renvoyée sera vide.

4.2.5 Trame de mise à jour de la valeur de registres spécifiques

Cette trame (0x41) permet via le réseau de modifier sur le produit les valeurs des registres demandés.

0	1	2	3	4	5		N	
Code		PAYLOAD						
0x41	CONF ID1	Valeur de CONF ID1	CONF ID2	Valeur de CONF ID2	Valeur de CONF ID2		Valeur de CONF IDn	

Description de la trame :

- Octet 1 : CONF ID1 (8bits) : indice du registre à modifier. Le registre correspondant est 300 + valeur de CONF IDX. Par exemple, si CONF ID1 =0x14=20 (décimal), le transmetteur modifiera la valeur du registre 320.
- Octet2: Valeur à donner à CONF ID1: dans cet exemple, sa valeur est contenue sur 1 octet
- Octet 3 : CONF ID2 (8bits) : indice du registre à modifier. Le registre correspondant est 300 + valeur de CONF IDX.
- Octets 4 et 5 : Valeur à donner à CONF ID2 : dans cet exemple, sa valeur est contenue sur 2 octets
- ...

Le produit ne retourne pas de trame montante en retour de la trame 0x41. Cependant le bit Config de l'octet de statut (voir paragraphe 4.1.1.2) sera mis à 1 si tout s'est bien passé dans la prochaine trame montante prévue (trame périodique ou d'alarme ou de vie).

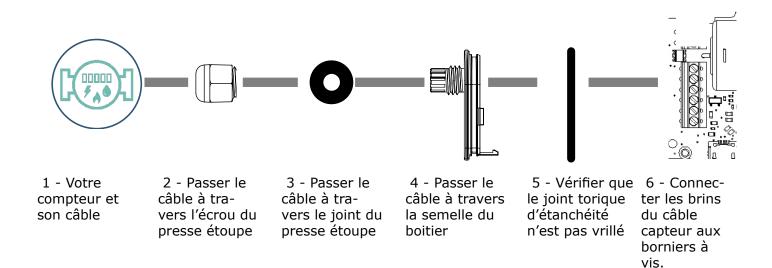
Note importante : la valeur 0xFF pour un CONF IDX stoppera à cet endroit la lecture de la trame descendante. Seules les octets précédents cette valeur 0xFF seront pris en compte. Ce mécanisme peut s'avérer utile lorsque vous devez travailler en longueur de trames de downlink fixe et que vous ne souhaitez pas utiliser tous les octets disponibles.

5. PRÉPARATION

5.1. Démontage du boîtier

Le produit est livré démonté, de sorte à pouvoir accéder à la partie basse de l'électronique. Cette partie permet le branchement du ou des capteurs sur les borniers à vis ainsi que l'accès au port micro USB pour la configuration du produit.

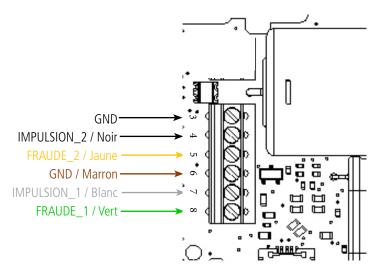
Une fois le montage des capteurs finalisé et la configuration effectuée, la fermeture du boîtier pourra être faite.


5.2. Installation du joint presse étoupe

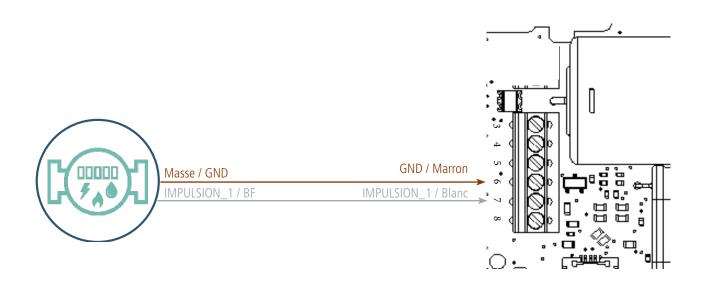
Avant de connecter les brins du câble de votre capteur aux borniers à vis du produit, vous devez insérer l'écrou du presse étoupe et le joint adapté à votre configuration.

Trois types de joints sont fournis avec le LoRaWAN PULSE: pour un câble diamètre 5 mm, pour un câble de diamètre 3 mm, pour deux câbles de diamètres 2.2 mm.

Procédure de montage:

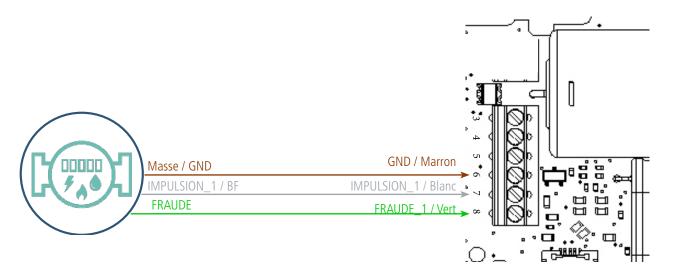

FR

5.3. Montage des compteurs sur les borniers à vis

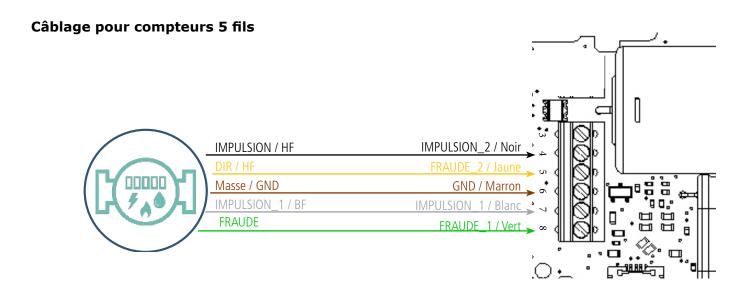

Une fois l'écrou et le joint de presse étoupe installés, les brins du câble du compteur peuvent être connectés aux borniers à vis du produit.

Ci-dessous l'identification de chaque bornier:

Note : 2 compteurs de même type au maximum peuvent être utilisés en parallèle. Ci-dessous la description des borniers :



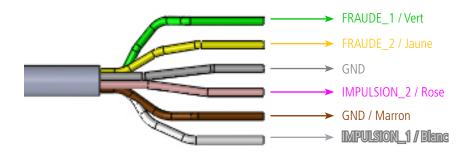
Câblage pour compteur 2 fils



Dans cette configuration, il est indispensable de désactiver l'entrée fraude de la voie A (registre 320 bit 3 = 0) et préférable de désactiver la voie B (registre 320 bit 4=0) qui ne sert pas.

Câblage pour compteurs 3 fils

Dans cette configuration, il est préférable d'activer l'entrée fraude de la voie A (registre 320 bit 3 = 1) et de désactiver la voie B (registre 320 bit 4=0) qui ne sert pas.

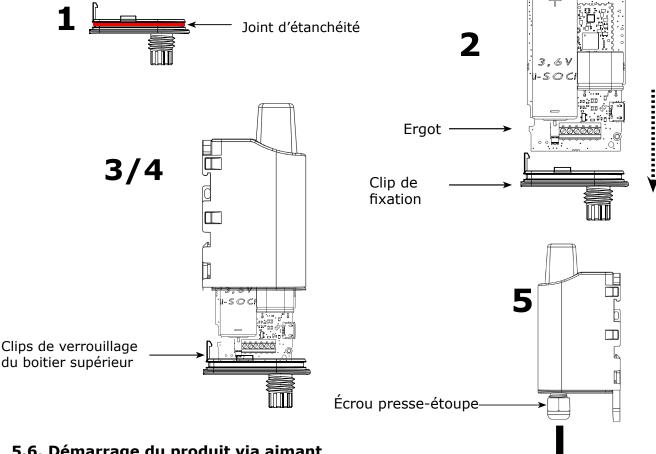


Dans cette configuration, les 2 voies (A et B) doivent être activées (registre 320 bit 0 et 4 mis à 1). La combinaison des comptages d'impulsions sur les voies A et B (IMPULSION_1 et IMPULSION_2) permettent de connaître les quantités passées dans les 2 sens.

L'activation des signaux FRAUDE_1 et FRAUDE_2 (registre 320 respectivement bit 3 et 7 mis à 1) permet de générer des alarmes de fraude et de mauvais sens de circulation.

5.4. Version avec câble 6 fils

Une version du PULSE est proposée avec un câble 6 fils de 70 cm déjà relié au bornier. Ci-dessous les explications des couleurs :

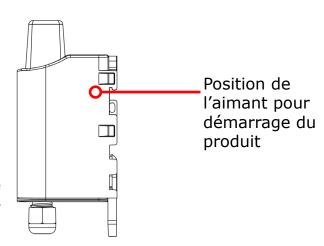


5.5. Fermeture du boîtier

Une fois les étapes précédentes effectuées, vous pouvez fermer le boiter du produit.

Procédure:

- 1. Assurez-vous que le joint d'étanchéité est bien en place sur la semelle et n'est pas vrillé
- 2. Clipser la carte électronique sur la semelle du boîtier. Assurer-vous que le clip de fixation est bien enclenché dans l'ergot de la carte.
- 3. Insérer la partie supérieure du boîtier. À l'intérieur de cette partie se trouvent des rails de guidage de la carte. Veiller à ce que la carte soit bien positionnée à l'intérieur de ces guides.
- 4. Une fois la carte positionnée, abaisser le capot supérieur et venir le verrouiller sur la semelle du boîtier. Une pression forte permet de clipser les deux parties et d'assurer le niveau de protection IP67.
- 5. Finir le montage en verrouillant l'écrou du presse-étoupe.



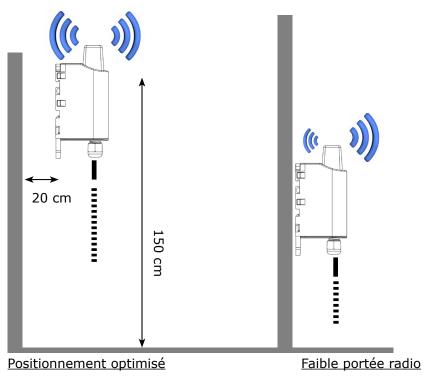
5.6. Démarrage du produit via aimant

Une fois la configuration du produit effectuée et son montage finalisé, le produit est prêt à être démarré.

Le démarrage s'effectue à l'aide d'un aimant que l'on appose sur la partie haute du produit (cf schéma ci-dessous). L'aimant doit être maintenu en position au minimum 6 secondes de sorte à confirmer le démarrage du produit.

Une fois que le produit valide son démarrage, il émet ses trames de status puis, après le temps de la période d'émission défini, une trame de donnée.

6. INSTALLATION ET UTILISATION


6.1. Positionnement correct des émetteurs

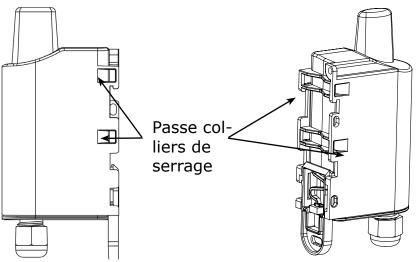
Deux règles sont primordiales pour une optimisation des portées radio.

- La première consiste à positionner votre produit le plus haut possible.
- La deuxième consiste à limiter le nombre d'obstacles pour éviter une trop grande atténuation de l'onde radio.

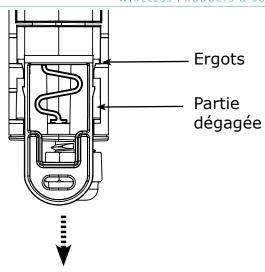
Position : dans la mesure du possible, installer l'émetteur à une hauteur minimale de 1m50 et non collé à la paroi

Obstacles: idéalement le produit doit être décalé de 20 cm d'un obstacle, et si possible près d'une ouverture (plus l'obstacle est proche, plus la puissance émise sera absorbée). Tous les matériaux rencontrés par une onde radio atténueront celle-ci. Retenez que le métal (armoire métallique, poutrelles...) et le béton (béton armé, cloisons, murs...) sont les matériaux les plus critiques pour la propagation des ondes radio.

6.2. Types de fixations


Le produit propose 3 modes de fixation permettant ainsi de nombreuses mises en place en fonction de l'environnement où il doit être déployé.

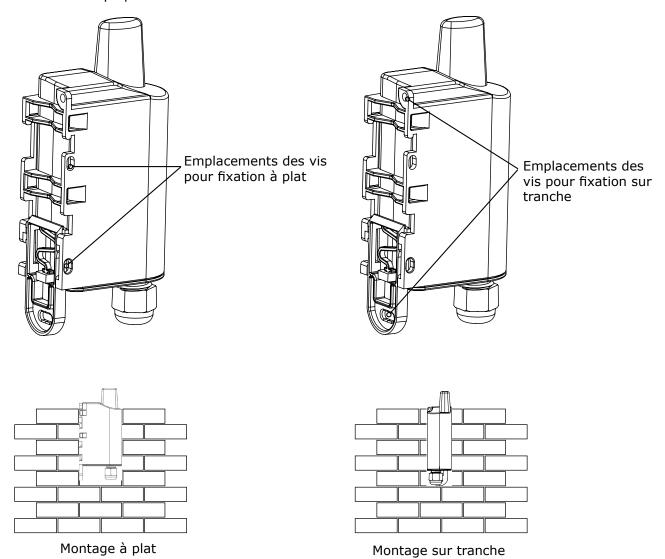
6.2.1 Fixation sur tube ou mât


Comme expliqué à l'étape 4.1, les meilleures performances radio sont obtenues en positionnant le produit le plus haut possible.

Les fixations pour collier de serrage permettent de fixer le produit sur un mât ou un tube en toute sécurité

Pour optimiser la fixation sur tube ou mât, il est recommandé de retirer le levier de verrouillage/déverrouillage Rail-DIN.

Pour retirer celui-ci, tirer vers le bas sur le levier jusqu'à ce que les ergots de blocage soient face à une partie dégagée et retirer le levier

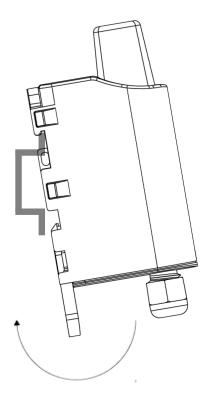


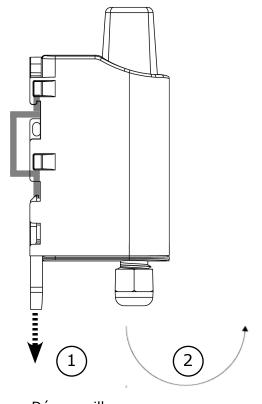
6.2.2 Fixation par vis

Le produit est livré avec 2 vis CBLZ 2.2 x 19mm et 2 chevilles SX4. Utiliser ces produits ou des produits équivalents pour fixer votre produit à un support plat.

Deux positions peuvent être choisies : à plat ou sur la tranche.

- La position sur la tranche permet d'éloigner le produit de son support et participe donc à une meilleure propagation des ondes radio.
- Si vous optez pour la position à plat, veuillez retirer le levier de verrouillage/déverrouillage Rail-DIN comme expliqué ci-dessus.




6.2.3 Fixation Rail-DIN

Ce système, intégré au boîtier, permet de fixer le produit sur un rail standard de 35mm

- Pour installer le boîtier, placer les inserts supérieurs sur le rail et abaisser le produit pour le clipser
- Pour retirer le produit, tirer le levier de déverrouillage vers le bas et désengager le produit du rail.

Verrouillage sur Rail DIN

Déverrouillage

ENGLISH

INFORMATIONS

Document Information	
Title	LoRaWAN PULSE and PULSE ATEX - User guide
Sub-title	Version 3.0.0
Document type	User Guide

This document applies to the following products:

Name	Reference	Firmware version
LoRaWAN PULSE and PULSE ATEX	ARF8230AA & ARF8230FA	Version RTU:
		V01.07.03
		Version APP:
		V02.00.00

DISCLAIMER

This document and the use of any information contained therein, is subject to the acceptance of the adeunis® terms and conditions. They can be downloaded from www.adeunis.com.

adeunis® makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.

adeunis® reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited. Copyright © 2016, adeunis®.

adeunis® is a registered trademark in the EU and other countries.

TECHNICAL SUPPORT

Website

Our website contains a lot of useful information: information on modules and wireless modems, user guides, and configuration software and technical documents which can be accessed 24 hours a day.

E-mail

If you have technical problems or cannot find the required information in the provided documents, contact our Technical Support on our website, section « Technical Support ». This ensures that your request will be processed as soon as possible.

Helpful Information when Contacting Technical Support

When contacting Technical Support, please have the following information ready:

- Product type
- Firmware version (for example V1.0)
- A clear description of your question or the problem
- A short description of the application

EU Declaration of Conformity

WE

Adeunis 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis.com

Declare that the DoC is issued under our sole responsibility and belongs to the following product:

Apparatus model/Product: PULSE LoRaWAN
Type: ARF8230AA

The object of the declaration described above is in conformity with the relevant Union harmonisation legislation:

Directive 2014/53/UE (RED)

The following harmonised standards and technical specifications have been applied:

Title:	Date of standard/specification
EN 300 220-2 V3.1.1	2017/02
EN 301 489-1 V2.1.1	2016/11
EN 301 489-3 V2.1.0	2016/09
EN 62368-1	2014
EN 62311	2008

Otober, 5th,2017 Monnet Emmanuel, Certification Manager

Thank 3

Déclaration UE de Conformité

(Interdit de modifier sans l'accord du référent ATEX)

Auteur	Version	Validation	Date	DESCRIPTION
EMT	0	FDBS	14/11/17	Creation
EMT	1	FDBS	28/05/18	LCIE ATEX number added

EU Declaration of Conformity

WE

adeunis 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis.com

Declare that the DoC is issued under our sole responsibility and belongs to the following product:

Apparatus model/Product: Pulse ATEX LoRaWAN

ARF8230FA Type:

Object of the declaration:

The object of the declaration described above is in conformity with the relevant Union harmonisation legislation:

Directive 2014/53/UE (RED)

Directive 2014/34/UE (ATEX)

The following harmonised standards and technical specifications have been applied:

Title: Date of standard/specification

EN 300 220-2 V3.1.1 2017/02 EN 301 489-1 V2.1.1 2016/11 EN 301 489-3 V2.1.0 2016/09 EN 62368-1 2014 EN 62311 2008

EN60079-0 2012+ A11:2013

EN60079-11 2012

The Notified Body listed below conducted the conformity assessment procedures ATEX Directive and issued the following certificate:

Produit	Marking	Certificate N°	ON/N°.
Pulse ATEX ARF8230FA	II 2 G D Ex ib IIC T4 Gb	LCIE 18 ATEX 3019 X	0081
	II 2 G D Ex ib IIIC T135°C Db		

(Interdit de modifier sans l'accord du référent ATEX)

May, 28th, 2018 Monnet Emmanuel, Certification Manager

INTRODUCTION

All rights to this manual are the exclusive property of adeunis®. All rights reserved. Copying this manual (without written permission from the owner) via printing, copying, recording or by any other means, translating this manual (in full or partially) into any other language, including all programming languages, using any electrical, mechanical, magnetic or optical devices, manually or any by other methods, is prohibited.

adeunis® reserves the right to change the technical specifications or functions of its products, or to cease manufacturing any of its products, or to cease technical support for one of its products without notice in writing and urges its customers to make sure that the information they have is valid.

adeunis® configuration software and programs are available free of charge in a non-modifiable version. adeunis® can make no guarantees, including guarantees concerning suitability and applicability for a certain type of application. Under no circumstances can the manufacturer, or the distributor of an adeunis® program, be held liable for any damage caused by the use of the aforesaid program. Program names, as well as all copyright relating to programs, are the exclusive property of adeunis®. Any transfer, granting of licences to a third party, leasing, hire, transport, copying, editing, translation, modification into another programming language or reverse engineering are prohibited without adeunis®'s prior written authorisation and consent.

Adeunis

283, rue Louis Néel 38920 Crolles France

Web www.adeunis.com

ENVIRONMENTAL RECOMMENDATIONS

All superfluous packaging materials have been eliminated. We have done everything possible to make it easy to separate the packaging into three types of materials: cardboard (box), expanded polystyrene (filler material) and polyethylene (packets, foam protective sheets). Your device is composed of materials that can be recycled and reused if it is dismantled by a specialist company. Please observe local regulations concerning the manner in which waste packaging material, used batteries and your obsolete equipment are disposed of.

WARNINGS

Valid for products indicated in the declaration of conformity

Read the instructions in the manual.

The safety of this product is only guaranteed when it is used in accordance with its purpose. Maintenance should only be carried out by qualified persons.

Risk of explosion if the battery is removed with an incorrect type. Contact Adeunis for more information if needed.

Risk of explosion if the battery is replaced by an incorrect type

Please note: Do not install the equipment close to a heat source or in damp conditions.

Please note: When the equipment is open, do not carry out any operations other than the ones set out in this document.

Please note: Do not open the product as there is a risk of electrical shock.

Please note: For your own safety, you must ensure that the equipment is switched off before carrying out any work on it.

Please note: For your own safety, the power supply circuit must be SELV (Safety Extra Low Voltage) and must be from limited power sources.

Please note: When the aerial is installed outside, it is essential to connect the cable screen to the building's earth. We recommend using lightning protection. The protection kit chosen must permit the coaxial cable to be earthed (eg: coaxial lightning arrester with earthing of the cable at different places on the aerial at the base of pylons and at the entrance, or just before entering the premises).

The product must be equipped with a switching mechanism so that the power can be cut. This must be close to the equipment. Any electrical connection of the product must be equipped with a protection device against voltage spikes and short-circuits.

RECOMMANDATIONS REGARDING USE

- Before using the system, check that the power supply voltage shown in the user manual corresponds to your supply. If it doesn't, please consult your supplier.
- Place the device against a flat, firm and stable surface.
- The device must be installed in a location that is sufficiently ventilated so that there is no risk of internal heating and it must not be covered with objects such as newspapers, cloths, curtains, etc.
- The device's aerial must be free and at least 10 cm away from any conducting material.
- The device must never be exposed to heat sources such as heating equipment.
- Do not place the device close to objects with naked flames such as lit candles, blowtorches, etc.
- The device must not be exposed to harsh chemical agents or solvents likely to damage the plastic or corrode the metal parts.

DISPOSAL OF WASTE BY USERS IN PRIVATE HOUSEHOLDS WITHIN THE EURO-PEAN UNION

This symbol on the product or on its packaging indicates that this product must not be disposed of with your other household waste. Instead, it is your responsibility to dispose of your waste by taking it to a collection point designated for the recycling of electrical and electronic appliances. Separate collection and recycling of your waste at the time of disposal will contribute to conserving natural resources and guarantee recycling that respects the environment and human health. For further information concerning your nearest recycling centre, please contact your nearest local authority/town hall offices, your household waste collection company or the shop where you bought the product

This symbol on the devode or its packaging means the use of a DC voltage.

Warning: If the charger is used with any other batteries or products whatsoever, there is a risk of an explosion. After use, the batteries must be disposed of at an appropriate recycling centre. They must not be thrown away to degrade in the environment. When batteries are replaced, the device must be corectly implemented.

Warning for Switzerland: the annex 4.10 of SR 814.013 Standad must be applied for batteries.

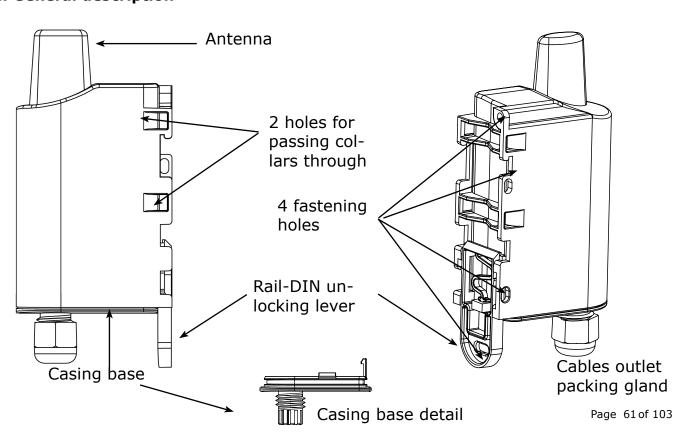
1. PRODUCT PRESENTATION

IMPORTANT NOTE: the LoRaWAN 863-870 PULSE can only be started or restarted using a magnet.

Description

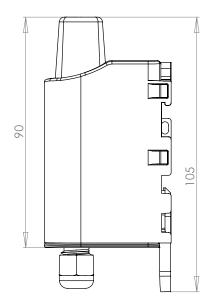
- LoRaWAN 863-870 PULSE is a ready to use radio transmitter that can be used to transform any type of meter into a wireless meter (smart meter).
- This product meets the needs of users who require to remotely monitor the consumption of different fluids (water, gas, electricity, heat ...) or any other phenomenon with an impulse interface (rain gauge, odometer ...).
- The use of the LoRaWAN protocol allows the user to integrate the LoRaWAN 863-870 PULSE into any network that is already deployed.
- Two 3 wires-meters or one 5 wires-meters may be controlled by a single LoRaWAN 863-870 PULSE transmitter thus permitting a significant reduction in implementation and deployment costs.
- The product emits the data from the meters periodically with or without history. It allows also the
 detection of tamper, and leakage, and the flow calculation with transmission possibilities on exceeding high or low thresholds.
- The configuration of the transmitter is accessible by the user via a micro-USB port or remotely via the LoRaWAN network, allowing in particular a choice of modes of transmission, periodicity or triggering thresholds.
- The LoRaWAN 863-870 PULSE is powered by a non-replaceable internal battery.

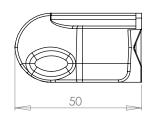
IMPORTANT NOTE: The LoRaWAN 863-870 PULSE is delivered by default with OTAA configuration, allowing the user to declare his/her product to a LoRaWAN operator For an ABP procedure, please contact our Sales Department with the necessary information.

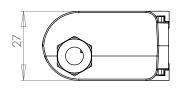

IMPORTANT NOTE: The LoRaWAN 863-870 PULSE can transmit measurements from the meters but does not power them.

Package composition

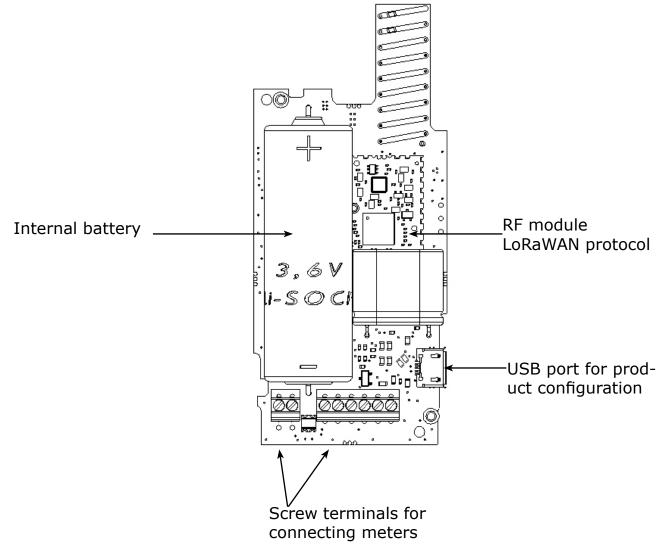
The product is supplied in a cardboard package containing the following elements:


- Upper case, electronic board, case plate.
- Compression gland with nut, 3 compression seals, 2 CBLZ 2.2 x 19mm screws, 2 Fischer SX4 plugs.


1.1. General description



1.2. Dimensions


Values in millimeters

1.3. Electronic card

1.4. Technical Specifications

1.4.1 **General characteristics**

Parameters	Value
Supply voltage	Nominal 3.6V
Power supply	Battery Li-SOCI2
Maximum Power	90mA
Working temperature	-25°C / +70°C
Dimensions	105 x 50 x 27mm
Casing	IP 67
LoRaWAN region	EU 863-870
LoRaWAN specification	1.0.2
Power transmission	14 dBm
Applicative port (downlink)	1

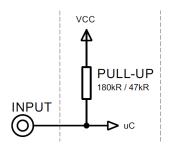
1.4.2 **Autonomy**

Operating conditions	Sending period- icity	Number of sen- sors	Autonomy (SF7)	Autonomy (SF12)
	140 frame/day	1	9.8 year	1.1 year
Product shelf life before use: Maxi-	140 frame/day	2	9.6 years	1.1 year
mum 1 year.	100frame/day	1	11.5 years	1.4 year
/	100 frame/day	2	11.1years	2 years
Calculations per-	50 frame/day	1	14.4 years	2.7 years
formed at a tem- perature of 20°C	50 frame/day	2	13.8 years	2.7 years
•	20 frame/day	1	17 years	5.6 years
Based on 500 puls-	20 frame/day	2	16.2 years	5.5 years
es / day	2 frame/day	1	19 years	15.5 years
	2 frame/day	2	18 years	15 years

The above values are estimations based on certain conditions of use and environment. They do not represent a commitment on the part of adeunis®.

WARNING: the connection of the USB cable can highly impact the device autonomy.

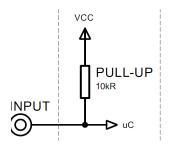
1.4.3 Sensor compatibility


Examples of sensors tested by adeunis® (non-exhaustive list):

Туре	Name	Type of sensor
	Itron Flodis	Cyble Sensor V2
Water	Wehrle TRK-HYX / ETK-EAX	Wehrle Modularis
	Sappel-Diehl Aquarius/Altair	IZAR Pulse 3 & 4 Fils
Gas	Elster BK	Elster IN-Z63
Electricity		Fludia FM250E et FM250M
Electricity	Socomec Countis E00	
Thermal	Itron CF Echo II	

1.4.4 Physical interface characteristics 1.4.4.01 INPUT Circuit

The schematic diagram is the following:


Absolute maximum ratings	Unit	
Minimum input voltage	- 0.7	V
Maximum input voltage	3.6	V

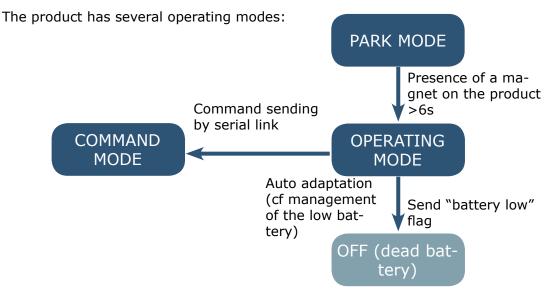
Electrical characteristics (Typ.)	Unit	
Minimum input voltage	0	V
Maximum input voltage	3.3	V
Equivalent Input pull-up	180 47	kΩ (Water) kΩ (Gas)
Input frequency	<100	HZ
Current consumption - Input HIGH	0	μA
Current consumption - Input LOW	20 80	μΑ (Water) μΑ (Gas)

Values beyond absolute maximum ratings will damage the device

1.4.4.02 TAMPER Circuit

The schematic diagram is the following:

Absolute maximum ratings	Unit	
Minimum input voltage	- 0.7	V
Maximum input voltage	3.6	V


Electrical characteristics		Unit
Minimum input voltage	0	V
Maximum input voltage	3.3	V
Equivalent Input pull-up	10	kΩ
Current consumption - Input HIGH	Not applicable	μΑ
Current consumption - Input LOW	Not applicable	μΑ

Values beyond absolute maximum ratings will damage the device.

2. PRODUCT OPERATION

2.1. Global Operation

Important: adeunis® use the most significant byte first format.

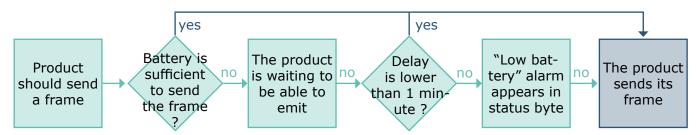
2.1.1 PARK mode

The product is delivered in PARK mode, it is in standby mode and its consumption is minimal. To switch the product out of the Park* Mode pass a magnet across it for a duration higher than 6 seconds. The green LED illuminates to indicate the detection of the magnet and then flashes quickly during the product starting phase.

The device then sends its configuration and data frames (see paragraph 4.1).

2.1.2 COMMAND mode

This mode allows the user to configure the registers of the product.

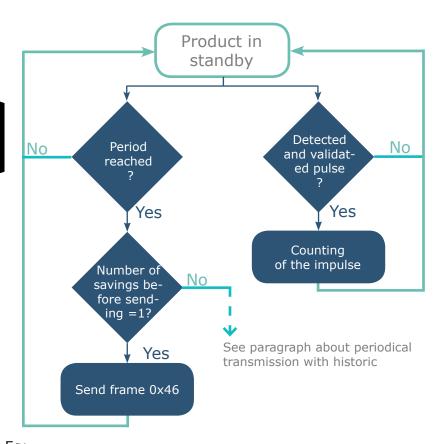

To enter this mode, connect a cable to the micro-USB port of the product and enter the command mode by an AT command (see paragraph 3).

2.1.3 OPERATING mode

This mode allows the user to operate the product in its final use. It should allow a maximum of autonomy to the product.

2.1.4 Management of the low battery

When the product detects that the battery is not anymore in capacity to deliver the energy needed to send a frame (extreme temperatures or end-of-life of the battery) it waits to be in capacity to transmit. If it detects that the delay generated is longer than 1 minute it informs the user via the "battery low" flag in the status byte of each frame.


The battery low alarm is switching off if the battery is replaced or when the temperature conditions are favorable for the proper functioning of the battery.

ΕN

2.2. Application operation

2.2.1 Periodic transmission

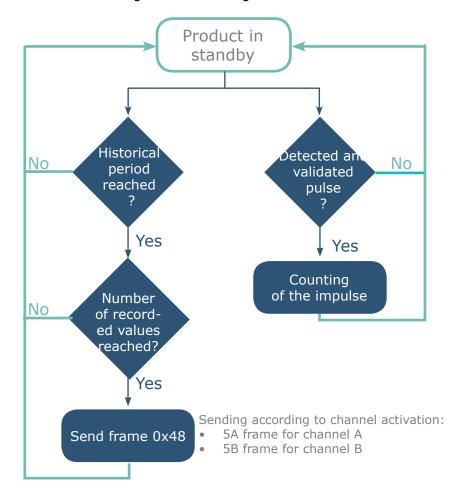
The product allows the measurement and the periodic transmission of the values of the sensors according to the following diagram:

The settings associated with this mode of operation are:

- Transmission frequency (register \$301)
- Historisation period of the data (register S321)
- Enabling and Configuring inputs (register S320)
- Anti-bounce timer period (registers S322)

A complete list of the registers can be found in paragraph 3.4.

<u>Eg:</u>


Register	Value encoding	Value	Result	
S301	Decimal	1	Number of historisation (savings) to be done before sending	
S321	Decimal	43200	Period of historisation/saving of the data (43200x 2 seconds = 24h).	
S320	Hexadecimal	0x39	Channel A:	
S322	Hexadecimal	0x57	Anti-rebound : Channel A = 500ms Channel B = 100ms	

N.B: for a periodical transmission without historisation of the data, S301 must be egal to 1.

2.2.2 Periodic transmission with history

The product allows the accumulation of several successive meter values before the periodic transmission of the set of values according to the following scheme:

The parameters associated with this mode of operation are:

- Enabling and Configuring inputs (register 320)
- Historisation period (register S321)
- Sending frequency (S301)
- Anti-bounce timer period (registers S322)

A complete list of the registers can be found in paragraph 3.4.

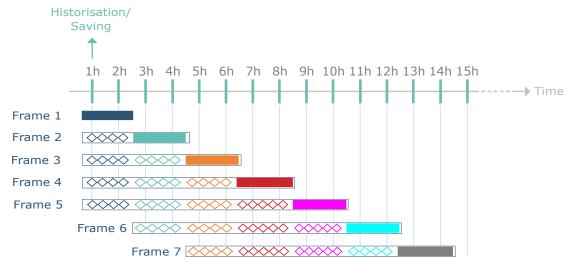
Eg:

Register	Value encoding	Value	Result
S320	Hexadecimal	0x39	Channel A:
S301	Decimal	4	Sending every 4 historisations (saving)
S321	Decimal	300	Historisation of the data every 10 minutes (300x2 seconds=600 seconds).
S322	Hexadecimal	0x57	Anti-rebound: Channel A = 500ms Channel B = 100ms

2.2.3 Periodic transmission with redundancy

The product enables to ad redundancy in the frame with historisation (cf scheme here under). Thanks to redundancy the product will memorize a certain number of data and send them again in the next frame.

The parameters associated with this mode of operation are:

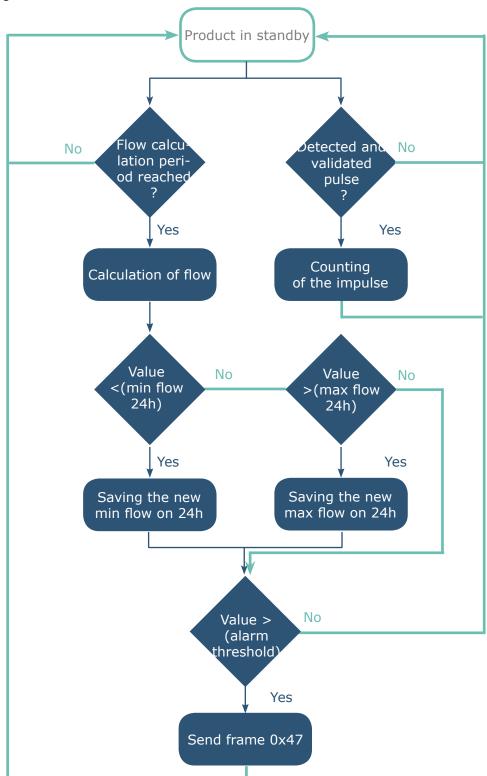

- Historisation period (register 321) and sending frequency (register 301)
- Enabling and Configuring inputs (register 320)
- Number of data to be repeated (register 340).

Example with redundancy:

Register	Encoding	Value	Result
S320	Hexadecimal	0x39	Channel A:
S301	Decimal	2	Sending every 4 historisations (saving)
S321	Decimal	1800	Historisation of the channel A and channel B index every hours (1800x2seconds = 60 minutes)
S322	Hexadecimal	0x57	Anti-rebound: • Channel A = 500ms • Channel B = 100ms
S340	Decimal	4	4 redundant data per frame

In this example:

- 1 historisation of the index each hours (1800x2seconds = 60 minutes)
- 1 sending every 2 savings so every 2 hours
- The 2 channel of the product are activated so the 2 periodic frame are sent (0x5A et 0x5B)
- When it is possible, the product will send for each channel the 2 recent index and the last 4 index memorized




2.2.4 Flow threshold alarm transmission

The product allows the detection of the exceeding of a flow threshold for each counting entry according to the following scheme:

The flow rate corresponds to the number of pulses of the flow calculation period divided by the same period. It is expressed in pulses / hour.

The alarm message (frame 0x47) is transmitted once, there is no new transmission if the flow rate returns above the threshold as long as the alarm remains active. The alarm is automatically deactivated after the daily frame is sent.

- Enabling and Configuring inputs (register 320)
- Anti-bounce timer period (register S322)
- Flow calculation period (register S325)
- Alarm thresholds (registers S326 and S327)

A complete list of the registers can be found in paragraph 3.4.

Example:

Register	Value encoding	Value	Result
S320	Hexadecimal	0x39	Channel A:
S322	Hexadecimal	0x57	Anti-bounce : Channel A = 500ms Channel B = 100ms
S325	Decimal	60	Flow calculation period (channels A and B) = 60min
S326	Decimal	10 000	Flow alarm threshold (channel A) = 10,000 pulses per hour
S327	Decimal	30 000	Flow alarm threshold (channel B) = 30,000 pulses per hour

Tamper detection 2.2.5

The product allows detection of state change on the tamper input of each channel (rising edge detected on the input normally held to ground).

The product wakes up regularly (according to the periods defined in registers S332 and S334) and checks the status of the tamper input of each of the channels having active fraud detection.

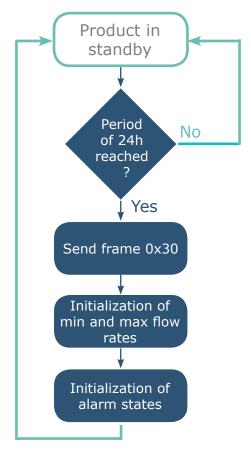
The tamper alarm is stored if there are several successive detections (configurable in registers S333 and S335) and transmitted within the next daily frame.

The alarm is automatically deactivated after the daily frame is sent.

The settings associated with this mode of operation are:

- Enabling and Configuring inputs (register 320)
- Fraud detection period 1 (register 332)
- Threshold for fraud detection 1 (register S333)
- Fraud detection period 2 (register 334)
- Threshold for fraud detection 2 (register S335)

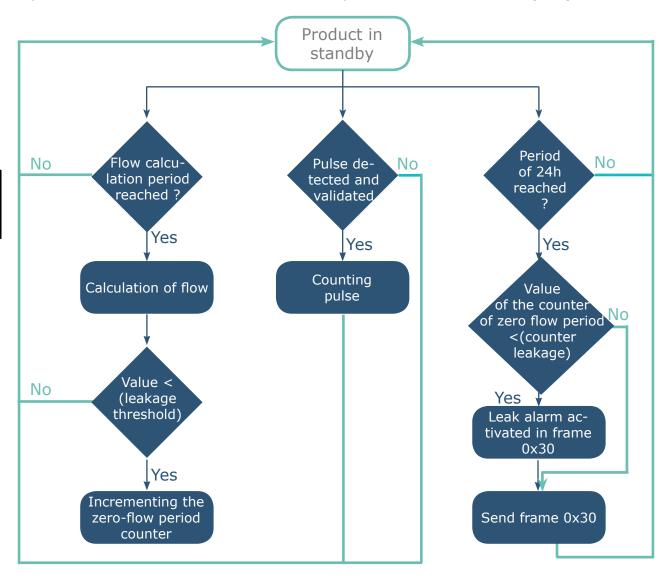
A complete list of the registers can be found in paragraph 3.4.



Ea:

-y.			
Register	Value encoding	Value	Result
S320	Hexadecimal	0x39	Channel A:
S332	Decimal	2	Scan period for A-channel tamper input is $2x10s = 20s$
S333	Decimal	3	Tamper detection threshold for A-channel = 3 (positive scans of B-channel tamper before triggering the tamper alarm)
S334	Decimal	2	Scan period for B-channel tamper input is $2x10s = 20s$
S335	Decimal	3	Tamper detection threshold for B-channel = 3 (positive scans of B-channel tamper before triggering the tamper alarm)

2.2.6 Transmitting a Daily Frame


The product transmits every 24 hours a daily frame (0x30) according to the following diagram:

The transmission period of the daily frame is fixed (24 hours) and not configurable.

2.2.7 Leaks detection

The product allows leak detection on each count input as shown in the following diagram:

The flow rate corresponds to the number of pulses of the flow calculation period divided by the same period. It is expressed in pulses / hour.

The leak detection is performed by analyzing a number of occurrences (configurable by register: S330 and S331) where the calculated flow rate is less than a leakage threshold (configurable by register: S328 and S329).

The associated leak alarm is stored and transmitted with the next daily frame. The alarm is automatically deactivated after the daily frame is sent.

The settings associated with this mode of operation are:

- Enabling and Configuring inputs (register 320)
- Anti-bounce timer period (register S322)
- Flow calculation period (register S325)
- Leak thresholds (registers S328 and S329)
- Null flow period counters (S330 and S331)

A complete list of the registers can be found in paragraph 3.4.

Example:

Register	Value encoding	Value	Result
S320	Hexadecimal	0x39	Channel A: Activated Meter other than gas Tamper input activated Channel B: Activated Gas meter Tamper input disabled
S322	Hexadecimal	0x57	Anti-bounce : Channel A = 500ms Channel B = 100ms
S325	Decimal	60	Flow calculation period (channels A and B) = 60min
S328	Decimal	10	Leak threshold (channel A) = 10 pulses par hour
S329	Decimal	0	Leak threshold (channel B) = 0 pulse par hour
S330	Decimal	3	Daily periods number under the leak threshold (channel A) = 3
S331	Decimal	5	Daily periods number under the leak threshold (channel B) = 5

In this example, all the periods during which the flow rate on the channel A is less than 10 pulses / hour are considered as periods of zero flow. If the total daily number of zero flow periods is less than 3 then it is considered that there is a leak on the channel A.

2.3. Operation of the LEDs

Mode	LED red state	LED green state
Product in Park mode	OFF	OFF
Magnet detection process (1 to 6 seconds)	OFF	ON from detection of the magnet up to a maximum of 1 second
Product start (after detection of the magnet)	OFF	Rapid flashing 6 cycles, 100 ms ON / 100 ms OFF
Joining process (Lora product)	During the JOIN phase: flashing: 50ms on / 1 s off If the JOIN phase is complete (JOIN accept): flashing: 50ms on / 50ms Off (6x)	During the JOIN phase: flashing: 50ms on / 1 s off (just after the red LED) If JOIN phase is complete (JOIN accept): flashing: 50ms on / 50ms off (just before the red LED)
Switching to the Command mode	Continuously lit	Continuously lit
Product faulty (return to factory)	Fixed ON	

3. DEVICE CONFIGURATION

The product can be configured using the USB interface and in two modes: or using the IoT Configurator (a user friendly application, recommended) or using the AT command.

WARNING: the connection of the USB cable is power consuming and has an highly impact on the device autonomy.

3.1. Iot Configurator

The IoT Configurator is a adeunis® application developed to facilitate the device configuration using a user-friendly interface. The IoT Configurator can be used on a smartphone or a tablet using Android or on a computer using Windows.

Compatible Windows 10 only and Android 5.0.0 minimum

Connect the micro-USB interface of the product to the computer or the smartphone. The application recognized automatically the product, download the configuration parameters and allows to configure quicly and instinctively thanks to forms (drop down menu, check box, text box..). The application allows to export an applicative configuration to duplicate it on other products in few clicks. The IoT Configurator is always updated with new features so don't forget to update the application.

For Smartphone or tablet:

Free application available on Google Play https://play.google.com/store/apps/details?id=com.adeunis.IoTConfiguratorApp

For computer: directly available on Adeunis website https://www.adeunis.com/en/downloads/

WARNING: the USB connection does not supply power to the product, it induces a consumption of the product as long as the one is connected. It is therefore important disconnect the product after use.

3.2. Advanced mode

3.2.1 Connecting the device to a computer

Connect the product to the USB input of a computer. The product has a micro USB connector. During connection, the device must be recognized by the computer as a Virtual Com Port (VCP) device.

Using Windows: Verification that the device has been recognized to be functioning properly can be obtained by consulting the device manager. You should see the USB series device with a corresponding COM port number appear during connection.

If you are not able to see a device of this type, you must install the USB driver for this device, available to download from our website:

https://www.adeunis.com/en/downloads/

Select:

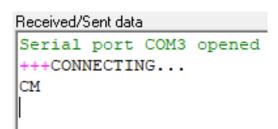
- Driver USB-STM32_x64, if your computer is a 64 bits system
- Driver USB-STM32, if your computer is a32 bits system

3.2.2 Command mode

Use a COM port terminal in order to communicate with the device. We use the HERCULES COM port soft terminal available to download for free by clicking on the following link: https://www.hw-group.com/products/hercules/index en.html

• With Hercules, select the "Serial" tab, then configure the serial port with the following serial parameters:

Parameters	VALUE
Rate	115 200 bps
Parity	None
Data	8
Stop Bit	1


- Select the serial port on which the device has been created with Windows (Name).
- Click on the "Open" button to open the serial port.

NOTE INFORMATION: If the com port has been opened correctly, Hercules will display the message "Serial COM3 port opened". Alternatively, "Serial port com opening error" will be displayed, meaning either that the com port is already open for another application, or it does not exist.

Write '+++' to execute the configuration mode..

On the com port terminal, you should also have «CONNECT-ING...» and « CM » feedback for Command Mode. Sending a character on Hercules is displayed in magenta and receiving a character is displayed in black. If you do not see sending characters, this is probably because ECHO is not active on this program. To activate the option in the accessible menu, right click in the viewing window.

3.3. AT commands

A command starts with 2 ASCII characters: "AT", followed by one or more characters and data (see the list below for the syntax of AT commands available on the modem).

Each command must finish with a "CR" or "CR" "LF" – both are acceptable.

(CR indicates: Carriage Return, LF indicates: Line Feed)

Once the command has been received, the modem will feedback:

<cr><lf> "Data" for ATS type playback control <n> ?, AT/S or AT/V

"O" <cr><lf>, for any other command when this has been accepted.

"E" <cr><lf>, if it refuses the command due to a syntax error, unknown command, unknown range, invalid parameter, etc.

"CM" <cr><lf>, if it accepts the input in command mode

Table of AT commands:

Command	Description	Reply example
+++	Input request in command mode	CONNECTING <cr><lf>CM<cr><lf></lf></cr></lf></cr>
ATPIN <pin></pin>	Gives access to AT commands if register S304 is different of 0	
AT/V	Feeds back the version of the AP- PLICATIF and RTU software	APP_8230EAA_PRG1706_V01.02.02:RTU_ RTU_WMBUS_868_PRG_1601_V00.00.03 Or APP_8181AAA_PRG1701_V01.00.02:R- TU_8120AAB_PRG_1701_V01.00.01
AT/N	Feeds back the type of network	"LoRa" or "SIGFOX" or « WMBUS »
ATS <n>?</n>	Feeds back the content of the n range	Sn=y where y represents the content of the n range
AT/S	Edits the content of all of the user ranges in the form of a list.	/
ATS <n>=<m></m></n>	Transfers the m VALUE to the n range	<pre>«O»<cr><lf> if Ok, «E»<cr><lf> if error, «W»<cr><lf> if coherency error</lf></cr></lf></cr></lf></cr></pre>
AT&W	Saves the current configuration to non-volatile memory.	«O» <cr><lf>, «E»<cr><lf> if coherency error</lf></cr></lf></cr>
ATO	Exit command mode	<pre>«O»<cr><lf>, «E»<cr><lf> if coherency error</lf></cr></lf></cr></pre>
ATT63 PROVIDER	Unblock the operating range	«O» <cr><lf></lf></cr>

3.4. Description of the registers3.4.1 Function register

The list of registers below allows you to change the behavior of the product application.

Regis- ter	Size (bytes)	Description	Coding	Details
S300	N/A	Transmission period of the Keep Alive frame		Ignored value, the period is set to 24 hours (not configurable) in OPERATION mode
S301	2	Sending frequency of the data sensors	Decimal	Default: 1 Min/max: 0 to 65 535
				0 = periodical sending disabled1: periodical without historisationX>1 : periodical with X historisations in the frame
S303	1	Confirmed mode activation	Decimal	Default value : 0 (deactivated) Values : 0 (deactivated) to 1 (activated)
S304	2	PIN code	Decimal	Default value : 0 (disabled) Min/max : 0 to 9999
				PIN code used with ATPIN command. Value 0 disables the PIN code.
				IMPORTANT: The PIN code protects the device configuration. After 3 incorrect attempts the device is blocked. If blocked, contact the customer service.
S306	1	Global operation	Decimal	Default value: 0 Allows the product to be switched into one of the following modes: • 0: PARK mode • 1: Production mode • 2 and 3: reserved
S320	1	Channels configuration (A and B)	Hexadec- imal	Default value: 0x11 For channel A: Bit 0: channel A activation Value 0: channel deactivated Value 1: channel activated Bit 1: meter type channel A (pull-up activation) Value 0: meter other than Gas (pull-up deactivated) Value 1: Gas meter (pull-up activated) Bit 2: Reserved Bit 3: tamper input channel A Value 0: deactivated Value 1: activated For channel B: Bit 0: channel B activation Value 0: channel deactivated Value 1: meter type channel B (pull-up activation) Value 0: meter other than Gas (pull-up deactivated) Value 1: Gas meter (pull-up activated) Bit 2: Reserved Bit 3: tamper input channel B Value 0: deactivated
S321	2	Historisation period	Decimal	Default value: 43200 (24h) Unit: x 2 seconds

r	V
۱	74
ı	W.

S322	1	Anti-bounce filter period (pulse minimum width) (channels A and B)	Hexadec- imal	Default value: 0x22 Bits 0 to 3: anti-bounce filter period - channel A Value 0: deactivated Value 1: 1 ms Value 2: 10 ms Value 3: 20 ms Value 4: 50 ms Value 5: 100 ms Value 6: 200 ms Value 7: 500 ms Value 8: 1 s Value 9: 2 s Value A: 5 s Value C à F: reserved Bits 4 to 7: anti-bounce filter period - channel B Value 0: deactivated Value 1: 1 ms Value 2: 10 ms Value 3: 20 ms Value 4: 50 ms Value 5: 100 ms Value 5: 100 ms Value 6: 200 ms Value 7: 500 ms Value 7: 500 ms Value 8: 1 s Value 7: 500 ms Value 8: 1 s Value 8: 5 s Value 8: 10 s Value C à F: reserved
S323	4	Current value of meter - channel A	Decimal	Default value: 0 Min/max: 0 to (2 ³²⁻¹) Unit: number of pulses In COMMAND mode, it is possible to write a new value in this register (for example an initialization value, an adjustment value).
S324	4	Current value of meter - channel B	Decimal	Default value: 0 Min/max: 0 to (2 ³²⁻¹) Unit: number of pulses In COMMAND mode, it is possible to write a new value in this register (for example an initialization value, an adjustment value).
S325	2	Flow calculation period (channels A and B)	Decimal	Default value: 60 Min/max : 1 to 1440 Unit :minute
S326	2	Flow threshold (channel A)	Decimal	Default value :0 (deactivated) Min/max : 0 to 65535 Unit: pulses per hour
S327	2	Flow threshold (channel B)	Decimal	Default value :0 (deactivated) Min/max : 0 to 65535 Unit: pulses per hour
S328	2	Leak threshold (channel A)	Decimal	Default value: 0 Min/max : 0 to 65535 Unit : pulses per hour
S329	2	Leak threshold (channel B)	Decimal	Default value: 0 Min/max : 0 to 65535 Unit : pulses per hour

S330	2	Number of daily periods under the leak threshold (channel A)	Decimal	Default value: 0 (deactivated) Min/max: 0 to 1440 Unit: none The multiplication of this register by the period of flow measurement must be less than 24 hours otherwise the product will be perpetually in alarm.
S331	2	Number of daily periods under the leak threshold (channel B)	Decimal	Default value: 0 (deactivated) Min/max: 0 to 1440 Unit: none The multiplication of this register by the period of flow measurement must be less than 24 hours otherwise the product will be perpetually in alarm.
S332	1	Scan period for Channel A tamper input	Decimal	Default: 2 Min/Max: 1 to 255 Unit: x10 seconds
S333	1	Tamper detection threshold channel A	Decimal	Default: 3 Min/Max: 1 to 255 Unit: none Number of positive scans of A-channel tamper before triggering the tamper alarm
S334	1	Scan period for Channel B tamper input	Decimal	Default: 2 Min/Max: 1 to 255 Unit: x10 seconds
S335	1	Tamper detection threshold channel B	Decimal	Default: 3 Min/Max: 1 to 255 Unit: none Number of positive scans of B-channel tamper before triggering the tamper alarm
S340	1	Number of redundant samples per frame	Decimal	Default: 0 Min/Max: 0-255

3.4.2 Network registers

The list of registers below allows you to modify the network parameters of the product. This list is accessible in Provider mode following execution of the ATT63 Provider command.

These registers must be handled with caution because they could cause problems of communication or of non-compliance with the legislation in force.

Regis- ter	Size (bytes)	Description	Coding	Details
S201	4	Spreading Factor (SF) by default	Decimal	Default: 12 (868) or 10 (915) depending on the reference of the product Min/max: 4 to 12 Unit: None
S202	4	Band width	Decimal	Default: 0 Possibilities: • 0=125kHz • 1=250kHz • 2=500kHz
S205	4	Transmission power	Decimal	Default: 14 Min/max : 2 to 14 Unit : dBm
S206	4	Spreading Factor (SF) maximum	Decimal	Default: 12 (868) or 10 (915) depending on the reference of the product Min/max: 5 to 12 Unit: None
S207	4	ADR settings: ADR_ACK_ LIMIT	Decimal	Default: 64 Min/max: 1 to 64 Unit: none

IX I
, .

S208	4	ADR settings: ADR_ACK_DE- LAY	Decimal	Default: 32 Min/max: 1 to 32 Unit: none
S214	4	LORA APP-EUI (first part – MSB)	Hexadeci- mal	Default: 0 Key encoded on 16 characters. Each register contains a part of the key.
S215	4	LORA APP-EUI (second part – LSB)	Hexadeci- mal	Used during the join phase in OTAA mode E.g.: APP-EUI = 0018B244 41524632 • S214 = 0018B244 • S215 = 41524632
S216	4	LORA APP-KEY (first part- MSB)	Hexadeci- mal	Default: 0 Key encoded on 32 byte characters. Each of the 4 registers contains 8 characters.
S217	4	LORA APP-KEY (second part – MID MSB)	Hexadeci- mal	Used during the join phase in OTAA mode E.g.: APP-KEY = 0018B244 41524632 0018B200 00000912
S218	4	LORA APP-KEY (third part – MID LSB)	Hexadeci- mal	• S216 = 0018B244 • S217 = 41524632 • S218 = 0018B200
S219	4	LORA APP-KEY (fourth part – LSB)	Hexadeci- mal	• S219 = 00000912
S220	4	LoRaWAN Options	Hexadeci- mal	Default: 1 Bit 0: Activation of the ADR ON(1)/OFF(0) Bit 1: Reserved Bit 2: DUTYCYCLE ON(1)/DUTYCYCLE OFF(0) Bit 3 to 7: Reserved WARNING: Deactivation of the Duty Cycle may result in a violation of the conditions of use of the frequency band, depending on the use of the product, thus violating the regulations in force. In the case of disabling the Duty Cycle, the responsibility is transferred to the user.
S221	4	Mode of activation	Decimal	Default: 1 Choice: (see NOTE1 after the board) • 0: ABP • 1: OTAA
S222	4	LORA NWK_ SKEY (first part – MSB)	Hexadeci- mal	Default: 0 Parameter encoded on 16 bytes. Each of the 4 registers contains 4 bytes.
S223	4	LORA NWK_ SKEY (second part - MID MSB)	Hexadeci- mal	
S224	4	LORA NWK_ SKEY (third part - MID LSB)	Hexadeci- mal	
S225	4	LORA NWK_ SKEY (fourth part – LSB)	Hexadeci- mal	

S226	4	LORA APP_ SKEY (first part - MSB)	Hexadeci- mal	Default: 0 Parameter encoded on 16 bytes. Each of the 4 registers contains 4 bytes.
S227	4	LORA APP_ SKEY (second part - MID MSB)	Hexadeci- mal	
S228	4	LORA APP_ SKEY (third part - MID LSB)	Hexadeci- mal	
S229	4	LORA APP_ SKEY (fourth part - LSB)	Hexadeci- mal	
S250	4	Configuration Canal 1	Decimal (868) Hexadeci- mal (915)	Default: 1 (868); 0 (915) Obligatory LoRaWAN operating channel Do not change this value
S251	4	Configuration Canal 2	Decimal (868) Hexadeci- mal (915)	Default: 1 Obligatory LoRaWAN operating channel Do not change this value
S252	4	Configuration Canal 3	Decimal (868) Hexadeci- mal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
S253	4	Configuration Canal 4	Decimal (868) Hexadeci- mal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
S254	4	Configuration Canal 5	Decimal (868) Hexadeci- mal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
S255	4	Configuration Canal 6	Decimal (868) Hexadeci- mal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
S256	4	Configuration RX2	Decimal (868) Hexadeci- mal (915)	Default: 1 0: Channel disabled 1: Default configuration: LoRaWAN Other: User configuration
S257	4	Type of tape (only in 915)	Decimal	Default: 3 Min/max: 0 to 3
S258	4	NETWORK ID	Hexadeci- mal	Default: 0 Read only
S280	4	DEVICE AD- DRESS	Hexadeci- mal	Default: 0
S281	4	DEVICE AD- DRESS	Hexadeci- mal	Default: 0

NOTE 1

The «Over The Air Activation» (OTAA) mode uses a join phase before being able to transmit on the network. This mode uses the APP_EUI (S214 and S215) and APP_KEY (S216 to S219) codes during this phase to create the keys for network communication.

Once this phase is completed, the codes APP_sKEY, NWK_sKEY and Device address will be present in the corresponding registers.

A new join phase is started every time the product comes out of Command mode, a reset is performed or the product is turned on.

Codes:

- APP_EUI identifier for global use (provided by default by adeunis®)
- APP_KEY device application key (provided by default by adeunis®)

The «Activation by personalization» (ABP) mode has no join phase; it transmits directly on the network using the codes NWK_sKEY (S222 to S225), APP_sKEY (S226 to S229) and Device address (S281) to communicate.

Codes:

- NWK_sKEY network session key (provided by default by adeunis®)
- APP_sKEY applicative session key (provided by default by adeunis®)
- DEVICE ADDRESS Address of the device in the network (provided by default by adeunis®)

NOTE 2:

By default, channels 0 to 2 use the default settings of the LoRaWAN network; the other 4 channels are inactive. A register value different from 0 or 1 allows the channel to be configured as follows:

Bit	7	6	5	4	3	2	1	0
Descrip- tion	Channel frequency						DR Max	DR Min
Exemple			868	100			5	3

Data Rate value (DR)	Description
0	SF12
1	SF11
2	SF10
3	SF9
4	SF8
5	SF7
6	SF7 – BW 250kHz
7	FSK 50 kps

The example given allows the user to configure a frequency of 868.1 Hz and authorizes a SF 7 to 9. The command to be sent to perform this operation is: ATS250=86810053<cr>

4. DESCRIPTION OF THE FRAMES

4.1. Uplink frame

The uplink frames of the product to the network have a different size depending of the transmitted data.

4.1.1 Fixed bytes

The first two bytes of the frame are systematically dedicated to indicate the frame code and the status as presented below:

0	1	2	3	4	5	6	7	8	9	10
Code	Status	PAYLOAD								

4.1.1.01 Byte code

This byte contains the code associated with the frame to facilitate its decoding by the data system.

4.1.1.02 Status Byte

The status byte is broken down in the following way:

Alarm Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Frame Counter			Reserved	Configura- tion incon- sistency	HW	Low Bat	Config
No Error				Х	0	0	0	0
Configura- tion done				×	0	0	0	1
Low bat		0x00 to 0x07		Х	0	0	1	0
HW Error	0.00 (0 0.07			Х	0	1	0	0
Configura- tion incon- sistency				Х	1	0	0	0

Details of the fields:

- Frame counter: Frame counter, it increments at each transmission and allows the user to see quickly if a frame has been lost. It counts from 0 to 7 before looping back.
- HW: This bit is set to 1 when a hardware error has occurred, for example a writing problem in the EEPROM, a reading problem on the ADC, etc. The product must be returned to the service dept.
- Low Bat: bit at 1 if the battery voltage is less than 2.5V, otherwise 0. This information remains permanent.
- Configuration done: bit at 1 if a configuration was carried out during the last downlink frame, otherwise 0. This bit returns to 0 as from the next frame.
- Configuration incoherency: data lost in periodic transmission because payload is insufficient (wrong configuration)

E.g.:

A value of the status byte equal to 0xA2 (= 10100010 in binary) gives:

- Bit 7 at 5 = 101 = 0x05 i.e. a frame counter at 5
- Bit 4 at 0 = 00010 in binary i.e. a low battery alarm

4.1.2 Frames of information on the product configuration

Following reception of a downlink frame with the code 0x01 or on switching to the operating mode (from the Park or Command Mode), the next frame (0x10) representing the application configuration of the product is transmitted:

0	1	2	3 et 4	5	6 et 7	8	9 et 10	11 et 12	13 et 14
Code	Status		PAYLOAD						
0x10	Cf Status	S306	S301	S320	S321	S322	S325	S326	S327
0x10	0xA3	0x01	0x003C	0x39	0x012C	0x57	0x003C	0x2710	0x7530

15 et 16	17 et 18	19 et 20	21 et 22	23	24	25	26	27
PAYLOAD								
S328	S329	S330	S331	S332	S333	S334	S335	S340
0x000A	0x0000	0x0003	0x0005	0x01	0x03	0x06	0x0A	0x0D

Frame size of 27 bytes.

Description of the frame:

- Byte 2: S306, product mode (PARK, PRODUCTION)
- Bytes 3 et 4: S301, transmission frequency, expressed in number of historisations
- Byte 5 : S320, input configuration (Channels A et B)
- Byte 6 et 7 : S321, historisation period (x2 seconds)
- Byte 8 : S322, anti-bounce filter period (channels A and B)
- Bytes 9 et 10 : S325, flow calculation period (minute)
- Bytes 11 et 12: S326, flow threshold (channel A)
- Bytes 13 et 14: S327, flow threshold (channel B)
- Bytes 15 et 16 : S328, leak threshold (channel A)
- Bytes 17 et 18 : S329, leak threshold (channel B)
- Bytes 19 et 20: S330, number of daily periods under leak threshold (channel A)
- Bytes 21 et 22: S331, number of daily periods under leak threshold (channel B)
- Byte 23: S332, sampling period for tamper 1
- Byte 24: S333, number of sampling necessary before sending the tamper alarm for tamper 1
- Byte 25: S334, sampling period for tamper 2
- Byte 26: S335, number of sampling necessary before sending the tamper alarm for tamper 2
- Byte 27: S340, number of redundant samples per frame

In the gray example it gives:

- Byte 2: S306=0x01: mode PRODUCTION activated
- Bytes 3 and 4: S301=0x0002 = 2 (decimal): 1 sending every 2 historisations/savings.
- Byte 5: S320 = 0x39: input configuration (Channels A and B):
 - Channel A: activated, meter different than gas, tamper input activated
 - Channel B: activated, gas meter and tamper input deactivated
- Byte 6 and 7: S321=0x012C=300 (decimal), so 1 historisation every 10 minutes (300x2sec=600)
- Byte 8: S322=0x57, anti-bounce filter Channel A = 500ms and Channel B = 100ms
- Bytes 9 and 10: S325=0x003C=60 decimal, flow calculation period is set to 60min
- Bytes 11 and 12: S326=0x2710=10 000 decimal, over-flow threshold detection on channel A set to 10 000 impulses per hour
- Bytes 13 and 14: S327=0x7530=30 000 decimal, over-flow threshold detection on channel B set to 30 000 impulses per hour
- Bytes 15 and 16: S328=0x000A=10 decimal, threshold tamper detection Channel A set to 10 impulses per hour
- Bytes 17 and 18: S329=0x0000, threshold tamper detection Channel B set to 0 impulse per hour
- Bytes 19 and 20: S330=0x0003, number of daily period under tamper threshold (Channel A) set to 3
- Bytes 21 and 22: S331=0x0005, number of daily period under tamper threshold (Channel B) set to 5
- Octet 23: S332, sampling period of tamper 1 set to 1
- Octet 24: S333, number of sampling necessary before tamper alarm for tamper 1 set to 3
- Octet 25: S334, sampling period of tamper 2 set to 6

- Octet 26: S335, number of sampling necessary before tamper alarm for tamper 2 set to 10
- Octet 27: S340, number of redundant samples per frame set to 13

4.1.3 Frame of information on the network configuration

Following reception of a downlink frame with the code 0x02 or on switching to the operating mode (from the Park or Command Mode), the next frame (0x20) representing the network configuration of the product is transmitted:

0	1	2	3	
Code	Status	PAYLOAD		
0x20	Cf Status	S220	S221	
0x20	0xA3	0x05	0x01	

Its size is of 4 bytes.

Description of the frame:

- Byte 2 : register S220 : Activation of Adaptative Data Rate
- Byte 3: register S221: connexion mode

In the example in grey this gives:

- Byte 2=0x05 : Adaptative Data Rate is activated
- Byte 3=0x01 : connexion mode is OTAA

4.1.4 Keep Alive frame

This frame (0x30) is transmitted 24 hours after the startup of the application or after the transmission of the previous Keep Alive frame.

0	1	2	3 - 4	5 - 6	7 - 8	9 - 10	
Code	Status	PAYLOAD					
0x30	Cf Status	Alarms	Max flow - channel A	Max flow - channel B	Min flow - channel A	Min flow - channel B	
0x30	0xA3	0x19	0x310A	0x12C4	0x0010	0x0000	

Its size is of 11 bytes.

Description of the frame:

- Byte 2: Alarms state (bit to 1 if the alarm is activated else 0):
 - Bit 0 Exceeding flow on channel A
 - Bit 1 Exceeding flow on channel B
 - Bit 2 Tamper detected on channel A
 - Bit 3 Tamper detected on channel B
 - Bit 4 Leak detected on channel A
 - Bit 5 Leak detected on channel B
 - Bit 6/7 Reserved
- Bytes 3 to 4: maximum measured flow on channel A within the last 24 hours.
- Bytes 5 to 6: maximum measured flow on channel B within the last 24 hours.
- Bytes 7 to 8: minimum measured flow on channel A within the last 24 hours.
- Bytes 9 to 10: minimum measured flow on channel B within the last 24 hours.

In the example in grey this gives:

- Byte 2 : Alarms = 0x19 so as (00011001) binary which gives:
 - Bit 0 = 1 Exceeding flow on channel A
 - Bit 1 = 0 No exceeding flow on channel B
 - Bit 2 = 0 No tamper detected on channel A
 - Bit 3 = 1 Tamper detected on channel B

- Bit 4 = 1 Leak detected on channel A
- Bit 5 = 0 No leak detected on channel B
- Bit 6/7 Reserved
- Bytes 3 à 4 : maximum measured flow on channel A within the last 24 hours. = 0x310A so 12,554 pulses per hour.
- Bytes 5 to 6: maximum measured flow on channel B within the last 24 hours. = 0x12C4 so 4,804 pulses per hour.
- Bytes 7 to 8 : minimum measured flow on channel A within the last 24 hours.= 0x0010 so 16 pulses per hour..
- Bytes 9 to 10 : minimum measured flow on channel B within the last 24 hours. = 0x0000 so 0 pulse per hour.

As a reminder, the alarms are automatically deactivated after the daily frame is sent.

4.1.5 Reply frame to a register value request in a downlink frame

Following reception of a downlink frame with the code 0x40, the frame 0x31 is transmitted. It contains all the values of the registers requested in the downlink frame 0x40.

Example:

Frame (0x40) sent to the product (downlink):

	0	1	2	3	4	5		N
	Code	PAYLOAD						
I	0x40	CONF ID1	CONF ID2	CONF ID3	Х	Х	Х	CONF IDn

The CONF IDX (8bits) fields represent the indices of the registers to be sent. The corresponding register is 300 + CONF IDX value.

Response frame (0x31) from the product:

0	1	2	3	4	5		N
Code	PAYLOAD						
0x31	Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	X

In this example: CONF ID1 is a 2-byte register, CONF ID2 a 1-byte register and CONF ID3 a 2-byte register.

If an error is detected in the request, the returned 0x31 frame will be empty.

4.1.6 Data Frame without historisation

This frame (0x46) is transmitted at the frequency defined in register S321 and only if register 301 is set to 1.

0	1	2 to 5	6 to 9	
Code	Status	PAYLOAD		
0x46	Cf Status	Counter - channel A	Counter - channel B	
0x46	0xA3	0x00015C4F	0x0000F74A	

Its size is of 10 bytes.

Description of the frame:

- Bytes 2 to 5: counter value for channel A when transmitting the frame
- Bytes 6 to 9: counter value for channel B when transmitting the frame

In the example in grey this gives:

- Bytes 2 to 5 : counter channel A = 0x00015C4F so 89,167 pulses
- Bytes 6 to 9 : counter channel B = 0x0000F74A so 63,306 pulses

4.1.7 Alarm frame

This frame (0x47) is sent if the measured flow of one of the channels exceeds the configured threshold for this channel (registers S326 and S327).

0	1	2 to 3	4 to 5	
Code	Status	PAYLOAD		
0x47	Cf Status	Measured flow - channel A	Measured flow - channel B	
0x47	0xA3	0x2904	0x206C	

Its size is of 6 bytes.

Description of the frame:

- Bytes 2 to 3: measured flow on channel A when detecting the exceeding of flow, in pulses per hour.
- Bytes 4 to 5: measured flow on channel B when detecting the exceeding of flow, in pulses per hour.

In the example in grey this gives:

- Bytes 2 to 3: measured flow on channel A when detecting the exceeding of flow, in pulses per hour = 0x2904 so 10,500 pulses per hour
- Bytes 4 to 5: measured flow on channel B when detecting the exceeding of flow, in pulses per hour = 0x206C so 8,300 pulses per hour

4.1.8 Periodic frame with historisation

These frames (0x5A et 0x5B) are sent, if the corresponding channels are activated (S320), at the period defined by registers S321 x S301.

0	1	2 à 5	6 et 7	8 et 9		48 et 49	
Code	Status		PAYLOAD				
0x5A / 0x5B	Cf Status	Index at t0	Variation of the index between t0 and t-1	Variation of the index between t-1 and t-2		Variation of the index between t-21 and t-22	
0x5A	0xA3	0x00015C4F	0xE6F3	0xF74A		0xF2AD	

WARNING: For LoRaWAN, max capacity in the frame is 23 Index samples (so S301<24 or S301+S340<24 if redundancy is activated). If S301 or S301+S340>23, the warning bit appeared in status byte. In this case, the product will sent the most recent samples at the expense of the oldest ones that will be lost.

Frame description:

- Bytes 2 at 5: counter index at t0
- Bytes 6 and 7: index variation of the counter between t0 and t-1
- Bytes 8 and 9: index variation of the counter between t-1 and t-2
- ..
- Bytes 48 and 49: index variation of the counter between t-21 and t-22

In the example it gives:

- Bytes 0 = 0x5A: this frame is for channel A
- Bytes 2 at 5 = 0x00015C4F so 89 167 impulses at t0
- Bytes 6 and 7 = 0xE6F3 so 59 123 impulses of difference between t0 and t-1
- Bytes 8 and 9 = 0xF74A so 63 306 impulses of difference between t-1 and t-2
- ..
- Bytes 48 and 49 = 0xF2AD so 62 125 impulses of difference between t-21 and t-22

4.1.9 Reply frame to a request for changing value of a register

Following reception of a downlink frame with the code 0x41, the frame 0x33 is transmitted. It shows whether the downlink frame (0x41) has been received and gives information on the support status of the latter.

0	1	2	3 et 4
Code	Status	PAY	LOAD
0x33	Cf Status	Request status	Concerned register
0x33	0xA3	0x02	0x012D

Its size is of 5 bytes.

Description of the frame:

- Byte 2 : Request status:
 - -0x00 = N/A
 - -0x01 = success
 - -0x02 = success, the value to set is the current register value
 - -0x03 = error, incoherency of the request
 - -0x04 = error, invalid register
 - -0x05 = error, incorrect value
 - -0x06 = error, truncated value
 - 0x07 = error, access not allowed
 - -0x08 = error, other reason
- Bytes 3 et 4: register concerned by the request (if request status different than 0x01).

In the example it gives:

- Byte 2 : 0x02 = request successful
- Bytes 3 et 4: 0x012D = 301 (decimal), request concern the register S301

4.1.10 Summary of the conditions of the transmission of the uplink frames

The table below summarizes the conditions of the transmission of the different uplink frames:

Code	Description	Sending conditions
0x10	Frames of information on the product configuration	 Product start-up Exit from the configuration mode (AT Command) Reception of a downlink frame 0x01
0x20	Frames of information on the network configuration	 Product start-up Exit from the configuration mode (AT Command) Reception of a downlink frame 0x02
0x30	Keep Alive frame	24 hours elapse since the start-up of the product or since the last transmission of this frame
0x31	Reply frame to a register value request in a downlink frame	Reception of a downlink frame 0x40
0x33	Reply frame to a request for changing value of a register	Reception of a downlink frame 0x41
0x46	Data Frame without periodic data	 Exit from the configuration mode (AT command) Transmission period reached (period defined by register S321) and 1 saving (defined by S301)
0x47	Alarm frame	• Exceeded flow threshold on one of the two channels (sending only if the exceeded flow control is enabled by writing a non-zero value in the S326 or S327 registers).
0x5A 0x5B	Periodic frame with historisation	 Transmission period reached (period defined by register S321 and 301) 0x5A for channel A 0x5B for channel B

4.2. Downlink frames

LoRaWAN technology makes it possible to transmit information to the product from the network (downlink frame).

The class A of the LoRaWAN specification allows the product to receive information from the network by proposing two listening windows after each uplink communication (uplink frame).

4.2.1 Product configuration request frame

This frame allows to inform the product via the network that it must resend the product configuration uplink frame (0x10).

0	1	2	3	4	5	6	7
Code	PAYLOAD						
0x01	0x00	0x00	0x00	0x00	0x00	0x00	0x00

4.2.2 Network configuration request frame

This frame allows to inform the product via the network that it must resend the network configuration uplink frame (0x20).

0	1	2	3	4	5	6	7
Code	PAYLOAD						
0x02	0x00	0x00	0x00	0x00	0x00	0x00	0x00

4.2.3 Frame for adding an offset to pulse counters

This frame allows to add an offset to the counter value on each channel.

0	1 to 4	5 to 8
Code		
0x03	Offset - chan- nel A	Offset - chan- nel B
0x03	0x0000015	0x00000050

Its size is of 9 bytes.

Description of the frame:

- Bytes 1 to 4: Offset channel A: numbers of pulses to add to current index of the meter (channel A) (unsigned 32-bits, MSB first).
- Bytes 5 to 8: Offset channel B : numbers of pulses to add to current index of the meter (channel B) (unsigned 32-bits, MSB first).

In the example in grey this gives:

- Bytes 1 to 4 =0x00000015 so 21 pulses to add to channel A counter
- Bytes 5 to 4 =0x00000050 so 80 pulses to add to channel B counter

4.2.4 Specifc register value request frame

This frame (0x40) allows to inform the product via the network that it must send the values of specific registers in a uplink frame (0x31).

0	1	2	3	4	5	 N
Code	PAYLOAD					
0x40	CONF ID1	CONF ID2	CONF ID3	CONF ID4	CONF ID5	 CONF IDn

Description of the frame:

• Bytes 1 to N : CONF IDX (8bits): indice of the register to be sent. The corresponding register is 300 + CONF IDX value.

For example, if CONF ID1 =0x14=20 (decimal), the product will send back the value of register number 320.

The associated uplink frame has the code 0x31 (see paragraphe 4.1.5)

0	1	2	3	4	5		N
Code	PAYLOAD						
0x31	Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	X

In this example: CONF ID1 is a 2-byte register, CONF ID2 a 1-byte register and CONF ID3 a 2-byte register.

If an error is detected in the request, the returned 0x31 frame will be empty.

IMPORTANT: The user can specify several CONF IDs in his downlink frame but it is his responsibility to verify that according to the protocol the size of the data available in a downlink frame will be large enough to contain all the desired data. Otherwise, the application will only send the frst values.

4.2.5 Frame for updating the value of specific registers

This frame (0x41) allows to change the value of requested registers.

0	1	2	3	4	5	 N
Code				PAYLOAD		
0x41	CONF ID1	CONF ID1 value	CONF ID2	CONF ID2 value	CONF ID2 value	 CONF IDn value

Description of the frame:

- Byte 1: CONF ID1 (8bits): indice of the first register to change. The corresponding register is 300 + value of CONF IDX. For example, if CONF ID1= 0x14=20 (decimal), the product will change the value of register number 320.
- Byte 2: value to assign to CONF ID1: in this example, its value has a size of 1 byte
- Byte 3: CONF ID2 (8bits): indice of the second register to change. The corresponding register is 300 + value of CONF IDX.
- Bytes 4 and 5: value to assign to CONF ID2: in this example, its value has a size of 2 bytes
- ...

The product does not return any uplink frame following the reception of a downlink frame 0x41. However, the Config bit of the status byte (see section 4.1.1.2) will be set to 1 in the next scheduled uplink frame (periodic or alarm or keep alive frame) if all was well done.

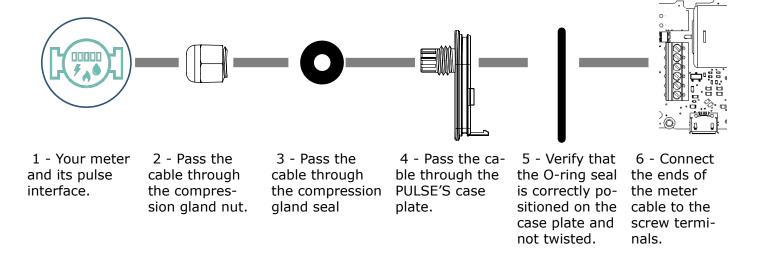
IMPORTANT: the value 0xFF for a CONF IDX will stop the reading of the downlink frame. Only the bytes preceding this value 0xFF will be taken into account. This mechanism can be useful when you need to work in fixed downlink frame lengths and you do not want to use all available bytes.

5. PREPARATION

5.1. Dismantling the case

The product is supplied disassembled such that the lower electronic part can be accessed. This part is where the meter or meters are connected to the screw terminals and where the micro USB port for configuration of the device.

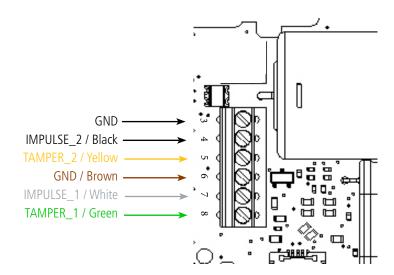
Once connection of the meters has been finalized and configuration carried out, the case may be closed.


5.2. Installation of the compression seal

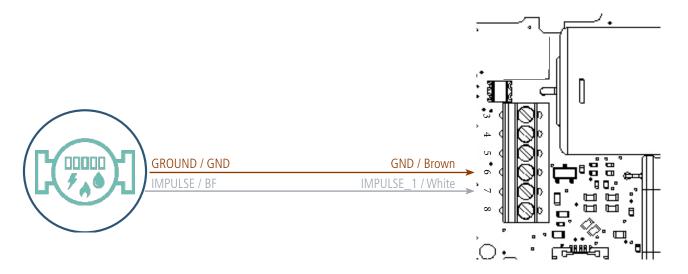
Before connecting your meter cables to the product's screw terminals, you must insert the compression gland nut and the appropriate seal for your configuration.

3 types of seals are supplied with the PULSE: for a 5 mm diameter cable, for a 3 mm diameter cable, for 2 \times 2.2 mm cables.

Assembly procedure:


5.3. Mounting the counters on the screw terminals

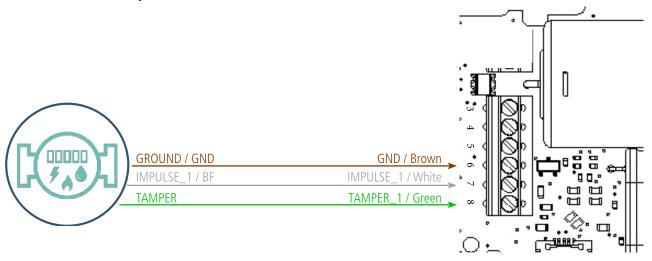
Once the nut and packing seal are installed, the strands of the meter cable can be connected to the screw terminals of the product.


Below is the identification of each terminal block:

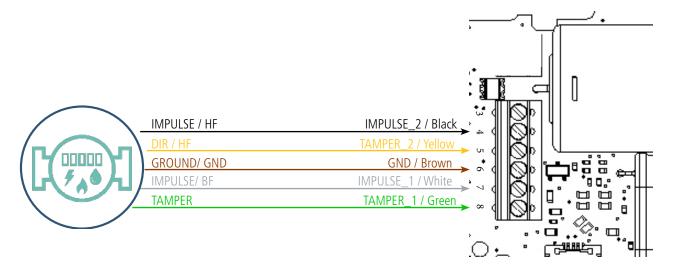
Note: Up to 2 meters of the same type can be used in parallel.

Below is a description of the terminal blocks:

Meter with 2-wire output



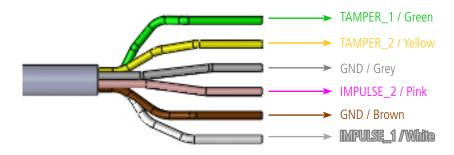
In this configuration, it is necessary to deactivate the input TAMPER of channel A (register 320 bit 3 = 0) and preferably deactivate channel B (register 320 bit 4=0) which is not no used.



Meter with 3-wire output

In this configuration, it is preferred to activate input TAMPER of channel A (register 320 bit 3 = 1) and deactivate channel B (register 320 bit 4=0) which is not no used.

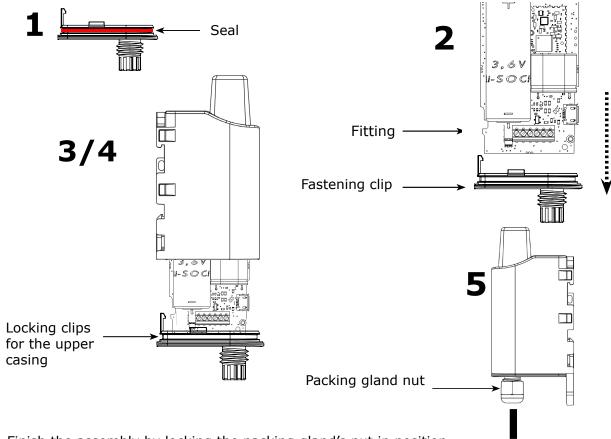
Meter with 5-wire output


In this configuration, the 2 inputs (A & B) must be activated (register 320 bits 0 and 4 = 1). The combination of the pulse counts on inputs A & B (IMPULSION_1 & IMPULSION_2) allows to know the quantities measured in the 2 directions.

The activation of signals FRAUDE_1 & FRAUDE_2 (register 320 respectively bit 3 and 7 = 1) allows to generate alarms of fraud and wrong flow direction.

5.4. 6 wires cable version

A version of the PULSE is proposed with a 6 wires cable of 70 cm already linked to the terminal blocks. Here under the explanations of the colors:

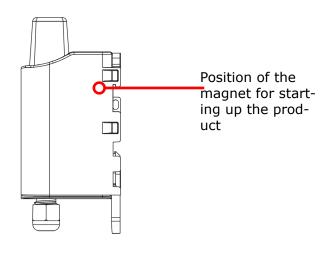


5.5. Closing the casing

Once previous stages have been carried out, you can close the casing of the LoRaWAN 863-870 PULSE

Procedure:

- 1. Make sure that the seal is properly positioned on the base
- 2. Clip the electronic board onto the casing's base. Make sure that the fastening clip is properly locked into the board's fitting.
- 3. Insert the upper part of the casing. Inside this part there are guide rails for the board. Make sure that the board is properly positioned within these guides.
- 4. Once the board is in position, lower the upper cover and lock it onto the casing's base. Strong pressure will enable both parts to be clipped together and will enable protection level IP67 to be ensured.


5. Finish the assembly by locking the packing gland's nut in position

Once the product has been configured and its assembly has been finalized, the product is ready to be started up.

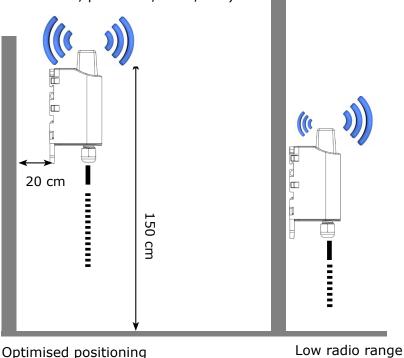
5.6. Starting up the product using a magnet

The start-up is carried out using a magnet which you place on the upper part of the product (cf. the diagram below). The magnet must be held in position for at least 6 seconds so as to confirm the start-up of the product. When the magnet is well detected, the green LED lights up for 1 second.

Once the LoRaWAN 863-870 PULSE unit validates its start-up, it immediately transmits status frames followed by a data frame (according the defined periodicity).

6. INSTALLATION AND USE

6.1. Correct positioning of the product

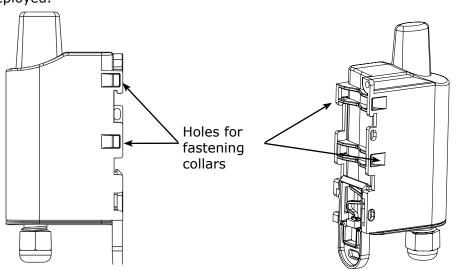

There are two key rules for optimizing radio ranges.

- The first one consists of positioning your product as high as possible.
- The second one consists of limiting the number of obstacles in order to avoid excessive attenuation of the radio wave.

Position: To the extent possible, install the transmitter at a minimum height of 1.50 m and do not attach it to the wall.

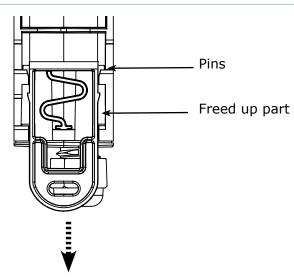
Obstacles: Ideally, the product must be 20 cm away from any obstacle and, if possible, near an opening (the closer the obstacle is, the more the emitted power will be absorbed). All the materials encountered by a radio wave will attenuate it. Bear in mind that metal (metal cabinets, beams, etc.) and concrete (reinforced concrete, partitions, walls, etc.) are the most critical materials for the propa-

gation of radio waves.


6.2. Types of fastenings

The product offers 3 fastening methods that enable numerous ways of positioning it depending on the environment where it has to be deployed.

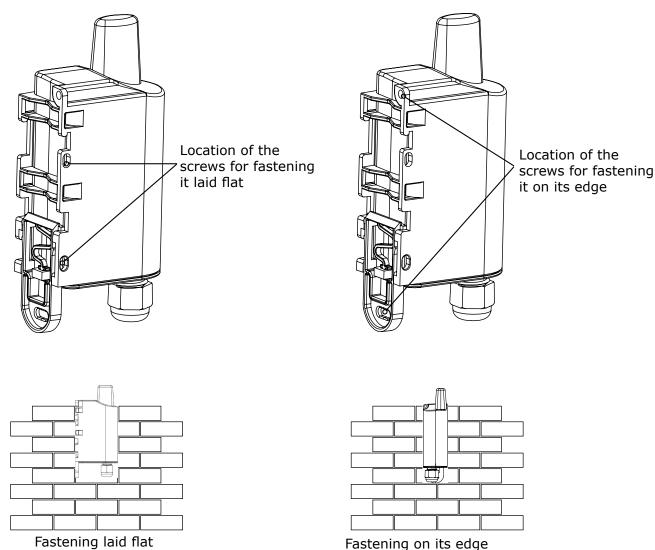
6.2.1 Tube or mast fastenings


As explained in section 4.1, the best radio performance is achieved by positioning the product as high as possible.

The fastening collar fastenings enable the product to be fastened on a mast or tube under completely safe conditions

To optimize fastening onto a tube or mast, we recommend you remove the Rail-DIN locking/unlocking lever.

To remove it, pull the lever down until the locking pins are opposite a freed-up part and then remove the lever

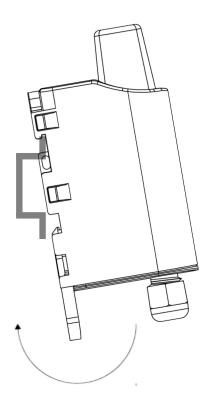


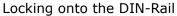
6.2.2 Fixing with screws

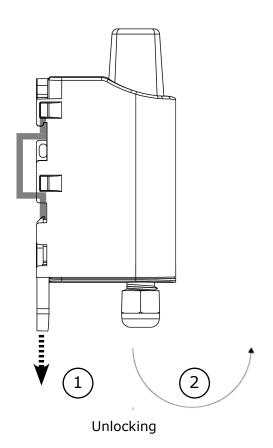
The product is delivered with 2 CBLZ 2.2 \times 19 mm screws and 2 SX4 wall plugs. Use these products or equivalent products in order to fasten your product onto a flat support.

Two positions may be selected: Laid flat or on its edge.

- Placing it on its edge enables the product to be placed at a distance from its support and helps achieve better propagation of the radio waves.
- If you opt for laying it flat, make sure you remove the Rail-DIN locking/unlocking lever, as explained above






6.2.3 DIN-Rail fixing

This system, integrated into the casing, enables the product unit to be fastened onto a standard 35 mm rail.

- To fit the casing, place the upper inserts on the rail and lower the product to clip it into position.
- To remove the product, pull the unlocking lever down and disengage the product from the rail.

7. DOCUMENT HISTORY

User guide version	Contents
V3.0.0	New release of the product with new frame with historisation and redundancy and a new management of the low battery
V2.0.4	Temperature changes technical specifications
V2.0.3	Minor add-ons + LoRaWAN specification 1.0.2
V2.0.2	Fixed new APP version
V2.0.1	Corrections and minor add-ons
V2.0	New Product version
V1.6	Update Declaration of Conformity
V1.5	Correction function error
V1.4	Unity added on register S292 & S294
V1.3	Periodicity via switches corrected (p13)
V1.2	Modification on chapter 2.6
V1.1	Technical detail
V1.0	Document created

DEUTSCH Vorschriften

DE

HAFTUNGSAUSSCHLUSS

Dieses Dokument und die Nutzung aller darin enthaltenen Informationen setzt das Einverständnis mit den Bestimmungen und Bedingungen von adeunis® voraus.

adeunis® übernimmt keine Garantie für die Richtigkeit oder Vollständigkeit des Inhalts dieses Dokuments und behält sich das Recht vor, jederzeit und ohne Vorankündigung Änderungen an den Produktspezifikationen und -beschreibungen vorzunehmen.

adeunis® behält sich alle Rechte an diesem Dokument und den darin enthaltenen Informationen vor. Die Vervielfältigung, Nutzung oder Weiterverbreitung an Dritte ohne ausdrückliche Genehmigung ist streng untersagt. Copyright © 2016, adeunis®.

adeunis® ist eine eingetragene Marke in den EU-Staaten und anderen Ländern.

TECHNISCHER SUPPORT

Website

Unsere Website enthält viele nützliche Informationen: Informationen zu Produkten und Zubehör, Benutzeranleitungen, Konfigurationssoftware und technische Dokumente, die rund um die Uhr abrufbar sind.

E-Mail

Falls Sie technische Probleme haben oder nicht die benötigten Informationen in den bereitgestellten Dokumenten finden können, setzen Sie sich per website mit unserem technischen Support in Verbindung. Verwenden Auf diese Weise wird sichergestellt, dass Ihrze Anfrage so schnell wie möglich bearbeitet wird.

Nützliche Informationen bei Kontaktierung unseres technischen Supports

Wenn Sie unseren technischen Support kontaktieren, halten Sie bitte folgende Informationen bereit:

- Produkttyp
- Firmware-Version
- Klare Beschreibung Ihrer Frage oder Ihres Problems
- Ihre vollständigen Kontaktdaten

VORBEMERKUNG

Alle Rechte an dieser Anleitung liegen ausschließlich bei . Alle Rechte vorbehalten. Die Vervielfältigung dieser Anleitung (ohne schriftliches Einverständnis des Eigentümers) mittels Drucken, Kopieren, Speichern oder in anderer Weise, die Übersetzung dieser Anleitung (vollständig oder teilweise) in jedwede Sprache, einschließlich aller Programmiersprachen, unter Verwendung jeglicher elektrischer, mechanischer, magnetischer, optischer, manueller Geräte oder anderer Methoden, ist untersagt.

adeunis® behält sich das Recht vor, ohne schriftliche Bekanntgabe und ohne ausdrückliches Verlangen seiner Kunden die technischen Spezifikationen oder Funktionen seiner Produkte zu ändern und sicherzustellen, dass die ihnen zur Verfügung gestellten Informationen gültig sind.

Die -Konfigurationssoftware und -programme adeunis® werden in einer unveränderlichen Version kostenlos bereitgestellt. adeunis® kann für einen bestimmten Typ von Anwendungen keinerlei Garantie übernehmen, auch keine Gewähr für deren Eignung und Verwendbarkeit. Der Hersteller oder Vertreiber eines -Programms kann auf keinen Fall für etwaige Schäden infolge der Nutzung dieses Programms haftbar gemacht werden. Die Namen der Programme sowie alle Urheberrechte im Zusammenhang mit den Programmen sind ausschließliches Eigentum von adeunis®. Jedwede(r) Übertragung, Lizenzierung an Dritte, Vermietung, Verleih, Überführung, Kopie, Bearbeitung, Übersetzung, Veränderung in einer anderen Programmiersprache oder Rückwärtsentwicklung (Reverse-Engineering) ohne die schriftliche Genehmigung und Zustimmung von ist untersagt.

Adeunis

283, rue Louis Néel 38920 Crolles Frankreich

Website

www.adeunis.com

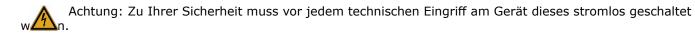
UMWELTSCHUTZHINWEISE

Es wurden alle überflüssigen Verpackungsmaterialien vermieden. Wir haben uns bemüht, dass die Verpackung leicht in drei Materialarten getrennt werden kann: Pappe (Schachtel), expandiertes Polystyrol (Puffermaterial) und Polyethylen (Tüten, Schaumstoff-Schutzlage). Ihr Gerät besteht aus recycelbaren Materialien, die im Falle einer Demontage durch ein Fachunternehmen wiederverwendet werden können. Bitte beachten Sie die vor Ort geltenden Vorschriften zur Entsorgung der Verpackungsabfälle, verbrauchten Batterien und Ihres Altgeräts.

WARNHINWEISE

Lesen Sie die Hinweise in dieser Anleitung.

Die Sicherheit dieses Produkts wird nur für eine bestimmungsgemäße Verwendung gewährleistet. Die Wartung darf nur von einer qualifizierten Person durchgeführt werden.


Explosionsgefahr, wenn die Batterie durch einen falschen Typ ersetzt wird

Achtung: Das Gerät nicht in der Nähe einer Wärme- oder Feuchtigkeitsquelle installieren.

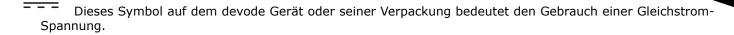
Achtung: Bei Öffnung des Geräts keine anderen als die in dieser Anleitung vorgesehenen Vorgänge durchführen.

Achtung: Das Produkt nicht öffnen – Gefahr eines Stromschlags.

Achtung: Zu Ihrer Sicherheit muss der Stromversorgungskreis des Produkts vom Typ SELV (Sicherheitskleinspannung) sein und es sich um Stromquellen mit begrenzter Leistung handeln.

Bitte beachten Sie: Wenn die Antenne draußen installiert ist, ist es notwendig, den Kabelschirm mit der Erdung des Gebäudes zu verbinden. Wir empfehlen den Blitzschutz. Der gewählte Schutzkit muss das Koaxialkabel wie geerdet haben (zB: Koaxial-Blitzableiter mit Erdung des Kabels an verschiedenen Stellen auf der Antenne an der Basis von Pylonen und am Eingang oder kurz vor dem Betreten der Räumlichkeiten).

Das Produkt muß mit einem Schaltmechanismus zum Abschalten des elektrischen Stroms ausge-stattet werden, welche sich in der Nähe der Ausrüstung befinden muss. Jede elektrische Verbin-dung des Produktes muß mit einer Schutzvorrichtung gegen Spannungsspitzen und Kurzschlüsse ausgestattet werden.


GEBRAUCHSHINWEISE

- Überprüfen Sie vor Benutzung des Systems, ob die in dessen Betriebsanleitung angegebene Versorgungsspannung mit Ihrer Stromquelle übereinstimmt. Falls nicht, wenden Sie sich an Ihren Lieferanten.
- Stellen Sie das Gerät auf eine ebene, feste und stabile Oberfläche.
- Das Gerät muss an einem ausreichend belüfteten Standort installiert werden, um jedes Risiko einer internen Überhitzung auszuschließen, und es darf nicht mit Objekten wie Zeitungen, Decken, Gardinen usw. abgedeckt werden.
- Das Gerät darf auf keinen Fall Hitzequellen wie Heizgeräten ausgesetzt werden.
- Stellen Sie das Gerät nicht in der Nähe brennender Gegenstände wie Kerzen, Lötbrennern, usw. auf.
- Das Gerät darf keinen aggressiven Chemikalien oder Lösungsmitteln ausgesetzt werden, die den Kunststoff angreifen oder die Metallteile korrodieren könnten.
- Das Terminal muss am Gürtel mit Hilfe eines dafür vorgesehenen Clips getragen werden.

ENTSORGUNG VON ABFÄLLEN DURCH DIE NUTZER IN PRIVATHAUSHALTEN IN DER EUROPÄISCHEN UNION

Dieses Symbol auf dem Produkt oder auf seiner Verpackung bedeutet, dass dieses Produkt nicht mit anderem Hausmüll entsorgt werden darf. Stattdessen obliegt es Ihrer Verantwortung, Ihre Abfälle zu einer benannten Sammelstelle für die Wiederverwertung von Elektro- und Elektronikaltgeräten zu bringen. Getrenntes Sammeln und Recyceln bei der Entsorgung Ihrer Abfälle trägt zur Bewahrung der natürlichen Ressourcen und zu einer umweltverträglichen Wiederverwertung sowie zum Schutz der menschlichen Gesundheit bei. Für weitere Informationen zum nächstgelegenen Recyclingzentrum wenden Sie sich an das nächste Rathaus, den Entsorgungsdienst für Haushaltsabfälle oder das Geschäft, in dem Sie das Produkt gekauft haben.

Achtung: Es besteht Explosionsgefahr, wenn die Batterien durch einen falschen Typ ersetzt werden. Entsorgen Sie die Batterien gemäß den Gebrauchshinweisen. Beim Wechsel der Batterien muss das Produkt wieder richtig und ordnungsgemäß zusammengebaut werden.

WICHTIG für die Schweiz: Für die Batterien muss Anhang 4.10 der Norm SR 814.013 Anwendung finden.