
©2018 LoRa™ Alliance Page 1 of 30 The authors reserve the right to change
specifications without notice.

LoRaWAN Fragmented Data Block Transport Specification v1.0.0 1
Copyright © 2018 LoRa Alliance, Inc. All rights reserved. 2

 3

NOTICE OF USE AND DISCLOSURE 4

Copyright © LoRa Alliance, Inc. (2018). All Rights Reserved. 5
 6
The information within this document is the property of the LoRa Alliance (“The Alliance”) and its use and 7
disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and 8
Membership Agreements. 9
 10
Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including 11
without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa 12
Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing 13
to identify any or all such third party intellectual property rights. 14
 15
This document and the information contained herein are provided on an “AS IS” basis and THE ALLIANCE 16
DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY 17
WARRANTY THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD 18
PARTIES (INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING 19
PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF 20
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,TITLE OR NONINFRINGEMENT. 21
 22
IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS 23
OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR 24
EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR 25
IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF 26
ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. 27
 28
 29
The above notice and this paragraph must be included on all copies of this document that are made. 30
 31
LoRa Alliance™ 32
5177 Brandin Court 33
Fremont, CA 94538 34
United States 35
Note: All Company, brand and product names may be trademarks that are the sole property of their respective 36
owners. 37

38

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 2 of 30 The authors reserve the right to change
specifications without notice.

 39

 40

LoRaWAN Fragmented Data Block 41

Transport Specification 42

 43
Authored by the FUOTA Working Group of the LoRa Alliance Technical Committee 44
 45
Technical Committee Chairs: 46
N.SORNIN (Semtech), A.YEGIN (Actility) 47
 48
Working Group Chairs: 49
J.CATALANO (Kerlink), N.SORNIN (Semtech) 50
 51
Editor: 52
J.CATALANO (Kerlink) 53
 54
Contributors: 55
J.CATALANO (Kerlink), J-P.COUPIGNY (STMicroelectronics), N.SORNIN (Semtech), 56
J.STOKKING (The Things Network Foundation) 57
 58
 59
Version: v1.0.0 60
Date: September 10, 2018 61
Status: Final release 62
 63

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 3 of 30 The authors reserve the right to change
specifications without notice.

Contents 64

1 Conventions ... 5 65
2 Introduction .. 6 66
3 Downlink Fragmentation Transport Message Package .. 7 67

3.1 PackageVersionReq & Ans .. 8 68
3.2 FragSessionSetupReq & Ans ... 8 69
3.3 FragSessionDeleteReq & Ans .. 10 70
3.4 Downlink Data Fragment message .. 10 71
3.5 FragSessionStatusReq & Ans .. 11 72

4 File integrity check and authentication ... 13 73
5 Fragmentation algorithm .. 14 74
Appendix: Data block fragmentation forward error correction code proposal 15 75
6 Introduction .. 16 76
7 Fragment error coding ... 17 77
8 Fragment decoding and reassembling ... 20 78
9 Performance of the coding scheme. ... 22 79
10 End-device memory requirement ... 24 80
11 Preliminary Matlab code ... 26 81
12 Glossary .. 28 82
13 Bibliography ... 29 83

13.1 References... 29 84
14 NOTICE OF USE AND DISCLOSURE ... 30 85
 86

Tables 87

Table 1: Fragmentation Control messages summary .. 7 88
Table 2: PackageVersionAns .. 8 89
Table 3: FragSessionSetupReq .. 8 90
Table 4: FragSessionSetupReq FragSession field .. 8 91
Table 5: FragSessionSetupReq Control field .. 9 92
Table 6: FragSessionSetupAns ... 9 93
Table 7: FragSessionSetupAns StatusBitMask field .. 9 94
Table 8: FragSessionDeleteReq ... 10 95
Table 9: FragSessionDeleteReq Param bits ... 10 96
Table 10: FragSessionDeleteAns .. 10 97
Table 11: FragSessionDeleteAns Status bits .. 10 98
Table 12: Downlink Data Fragment payload .. 10 99
Table 13: Downlink Data Fragment Index&N field ... 10 100
Table 14: FragSessionStatusReq.. 11 101
Table 15: FragSessionStatusReq FragStatusReqParam field ... 11 102
Table 16: FragSessionStatusReq FragStatusReqParam field participant bit 11 103
Table 17: FragSessionStatusAns .. 12 104
Table 18: FragSessionStatusAns Received&index field .. 12 105
Table 19: FragSessionStatusAns Status field ... 12 106

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 4 of 30 The authors reserve the right to change
specifications without notice.

 107

Figures 108

Figure 1 : 26x52 parity check matrix .. 18 109
Figure 2 : 32x32 matrix A built during decoding process ... 21 110
 111

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 5 of 30 The authors reserve the right to change
specifications without notice.

1 Conventions 112

 113
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 114
"SHOULD NOT", "RECOMMENDED”, “MAY", and “OPTIONAL" in this document are to be 115
interpreted as described in RFC 2119. 116
 117

The octet order over the air for all multi-octet fields is little endian (Least significant byte is 118
sent first). 119
 120

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 6 of 30 The authors reserve the right to change
specifications without notice.

2 Introduction 121

 122
This document proposes an application layer messaging package running over LoRaWAN to 123
perform the following operations on a fleet of end-devices: 124

• Send a fragmented block of data to one or many end-devices 125
 126

All messages described in this document are transported as application layer messages. As 127
such, all unicast messages (uplink or downlink) are encrypted by the LoRaWAN MAC layer 128
using the end-device’s AppSKey. Downlink multicast messages are encrypted using a 129
multicast group McAppSKey common to all end-devices of the group. The setup of the group 130
is described in [RPD_Remote_Multicast_Setup]. 131

The data block transported may be a firmware upgrade, but this document is not specific to 132
firmware upgrade. Any large (from 1kBytes to X Kbytes) data file may be sent to a (group of) 133
end-device using this protocol. 134

 135

The “fragmentation control” package can be used to: 136

• Setup / report / delete fragmentation transport sessions 137

• Several fragmentation sessions MAY be supported simultaneously by an end-device 138

• Fragmentation can be used either over multicast or unicast 139

• Authenticate a data block once reconstructed (TBD) 140

• Report on the status of a fragmentation session 141

 142

This package uses a dedicated port to separate its traffic from the rest of the applicative 143
traffic. 144

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 7 of 30 The authors reserve the right to change
specifications without notice.

3 Downlink Fragmentation Transport Message Package 145

 146
The identifier of the fragmentation transport package is 3. The version of this package is 147
version 1. 148
 149
This package supports all the commands necessary to transport reliably a large data block 150
from a fragmentation server to an end-device (using unicast) or a group of end-device (if 151
multicast is used over classB or classC). This package requires a dedicated port. The 152
default port value is 201. Once declared, this port cannot be used for any other purposes. 153
 154
All fragmentation related messages are exchanged on this port using application payload 155
and encrypted using the end-device’s AppSKey or the McAppSKey. All unicast or multicast 156
control messages use the same format: 157

Command1 Command1
Payload

Command2 Command2
payload

….

 158
A message MAY carry more than one command with the exception of the “Data fragment” 159
command which MUST be the only command in a message’s payload. The length of each 160
command’s payload is fixed and a function of the command. Commands are executed from 161
first to last. 162
 163
The following table summarizes the list of fragmentation control messages 164
 165
CID Command name Transmitt

ed by
Multicast

(M) /
Unicast

(U)

Short Description

E
n
d
-

d
e
v
ic

e

s
e
rv

e
r

0x00 PackageVersionReq x U Used by the AS to request the package
version implemented by the end-device

0x00 PackageVersionAns x U Conveys the answer to
PackageVersionReq

0x01 FragStatusReq x U/M Asks an end-device or a group of end-
devices to send the status of a

fragmentation session

0x01 FragStatusAns x U Conveys answer to the
FragSessionStatus request

0x02 FragSessionSetupReq x U Defines a fragmentation session

0x02 FragSessionSetupAns x U

0x03 FragSessionDeleteReq x U Used to delete a fragmentation session

0x03 FragSessionDeleteAns x U

0x08 DataFragment x U/M Carries a fragment of a data block
Table 1: Fragmentation Control messages summary 166

 167
The message marked “U/M” can be received using a unicast or multicast address. All other 168
messages are exchanged only using the unicast end-device address. 169
 170

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 8 of 30 The authors reserve the right to change
specifications without notice.

3.1 PackageVersionReq & Ans 171

 172
The PackageVersionReq command has no payload. 173
The end-device answers with a PackageVersionAns command with the following payload. 174
 175

Field PackageIdentifier PackageVersion

Size (bytes) 1 1
Table 2: PackageVersionAns 176

PackageIdentifier uniquely identifies the package. For the “fragmentation transport package” 177
this identifier is 3. 178
PackageVersion corresponds to the version of the package specification implemented by the 179
end-device. 180

3.2 FragSessionSetupReq & Ans 181

This message is used to setup a DL fragmentation transport session. 182
 183

Table 3: FragSessionSetupReq 184

 185
FragSession identifies the fragmentation session and contains the following fields 186
 187

FragSession Fields RFU FragIndex McGroupBitMask

Size (bits) 2bits 2bits 4bits
Table 4: FragSessionSetupReq FragSession field 188

FragIndex [0 to 3] identifies one of the 4 simultaneously possible fragmentation sessions. 189
 190
McGroupBitMask specifies which multicast group addresses are allowed as input to this 191
defragmentation session. Bit number X indicates if multicast group with McGroupID=X is 192
allowed to feed fragments to the defragmentation session. Unicast can always be used as a 193
source for the defragmentation session and cannot be disabled. For example, 4’b0000 194
means that only Unicast can be used with this fragmentation session. 4’b0001 means the 195
defragmentation layer MAY receive packets from the multicast group with McGroupID=0 and 196
the unicast address. 4’b1111 means that any of the 4 multicast groups or unicast may be 197
used. If the end-device does not support multicast, this field SHALL be ignored. 198

Note: the McGroupBitMask is a mechanism allowing tying a 199
defragmentation session to one or several specific multicast group 200
addresses in a given end-device. For example, a street lighting 201
controller end-device is part of 2 multicast groups, one used to control 202
the lamps and one for firmware updates. Only data fragments coming 203
from the second group shall be taken into account by the fragmented 204
transport layer. The first group shall only transport ON/OFF lamp 205
control packet and should not be allowed to transport firmware update 206
data. 207

 208
NbFrag (Number of Fragments) specifies the total number of fragments of the data block to 209
be transported during the coming multicast fragmentation session. (example: 100 means 210
that the data block that is going to be multicasted will be divided in 100 fragments) 211

Field FragSession NbFrag FragSize Control Padding Descriptor

Size (bytes) 1 2 1 1 1 4

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 9 of 30 The authors reserve the right to change
specifications without notice.

 212
FragSize (fragment size) is the size in byte of each fragment. The data block size is 213
therefore NbFrag x FragSize 214
 215
Control consists of 2 fields 216
 217

Control Fields RFU FragAlgo BlockAckDelay

Size (bits) 2bits 3bits 3bits
Table 5: FragSessionSetupReq Control field 218

 219
FragAlgo encodes the type of fragmentation algorithm used. This parameter is simply 220
passed to the fragmentation algorithm. FragAlgo 0 corresponds to FEC fragmentation 221
described in Appendix “data block fragmentation forward error correction code proposal”. 222
 223
BlockAckDelay encodes the amplitude of the random delay that end-devices have to wait 224
between the reception of a downlink command sent using multicast and the transmission of 225
their answer. This parameter is a function of the group size and the geographic spread and 226
is used to avoid too many collisions on the uplink due to many end-devices simultaneously 227

answering the same command. The actual delay SHALL be 𝑟𝑎𝑛𝑑(). 2𝐵𝑙𝑜𝑐𝑘𝐴𝑐𝑘𝐷𝑒𝑙𝑎𝑦+4 seconds 228
where 𝑟𝑎𝑛𝑑() is a random number in the [0:1] interval. 229
 230
Padding: The binary data block size may not be a multiple of FragSize. Therefore, some 231
padding bytes MUST be added to fill the last fragment. This field encodes the number of 232
padding byte used. Once the data block has been reconstructed by the receiver, it SHALL 233
remove the last “padding” bytes in order to get the original binary file. 234
 235
Descriptor: The descriptor field is a freely allocated 4 bytes field describing the file that is 236
going to be transported through the fragmentation session. For example, this field MAY be 237
used by the end-device to decide where to store the defragmented file, how to treat it once 238
received, etc... If the file transported is a FUOTA binary image, this field might encode the 239
version of the firmware transported to allow end-device side compatibility verifications. The 240
encoding of this field is application specific. 241
 242
The end-device answers with a FragSessionSetupAns message with the following payload 243
 244

FragSessionSetupAns payload StatusBitMask

Size (bytes) 1
Table 6: FragSessionSetupAns 245

 246
 247

Bits 7:6 5:4 3 2 1 0

Status bits FragIndex RFU Wrong
Descriptor

FragSession
index not
supported

Not enough
Memory

Encoding
unsupported

Table 7: FragSessionSetupAns StatusBitMask field 248

If any of the bits [0:3] is set to 1 the FragSessionSetup command was not accepted. 249
 250
If a FragSessionSetupReq command with a FragIndex field corresponding to an already 251
existing fragmentation session is received, the context of this session is cleared, and a new 252
session is setup with the parameters of the new FragSesisonSetupReq command. 253

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 10 of 30 The authors reserve the right to change
specifications without notice.

 254

3.3 FragSessionDeleteReq & Ans 255

This message is used to delete a fragmentation session. A fragmentation session MUST be 256
deleted before its index (FragIndex) can be reused for another one. The command payload 257
is: 258
 259
 260
 261

Table 8: FragSessionDeleteReq 262

Where: 263

Bits 7:2 1:0

Param bits RFU FragIndex
Table 9: FragSessionDeleteReq Param bits 264

 265
The end-device answers with FragSessionDeleteAns with payload: 266
 267
 268
 269

Table 10: FragSessionDeleteAns 270

Where: 271
Bits 7:3 2 1:0

Status bits RFU Session does
not exist

FragIndex

Table 11: FragSessionDeleteAns Status bits 272

If the bit 2 is set to 1 the FragSessionDeleteReq command was not accepted because the 273
fragmentation session corresponding to FragIndex did not exist in the end-device. 274

3.4 Downlink Data Fragment message 275

This message can be received by the end-device in a multicast or unicast downlink frame. 276
This message is used to carry a data block fragment. 277

The payload content is: 278
 279

Size (bytes) Index&N 0:MaxAppPl-3

Payload
2 𝑃𝑀

𝑁
Table 12: Downlink Data Fragment payload 280

 281

Index&N Fields FragIndex N

Size (bits) 2bits 14bits
Table 13: Downlink Data Fragment Index&N field 282

Field Param

Size (bytes) 1

Field Status

Size (bytes) 1

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 11 of 30 The authors reserve the right to change
specifications without notice.

 283

If this message was received on a multicast address, the end-device MUST check that the 284
multicast address used was enabled at the creation of the fragmentation session through the 285
McGroupBitMask field of the FragSessionSetup command. If not, the frame SHALL be 286
silently dropped. 287

Where 𝑃𝑀
𝑁 is the fragment N over M of the session. 288

More than M fragments MAY actually be transmitted to add redundancy and packet loss 289
robustness. N is the index of the coded fragment transported. 290

M is equal to the NbFrag parameter. 291

Once the data block has been reconstructed the end-device SHALL drop any further 292
message using that fragIndex until the fragmentation session is first deleted and a new 293
fragmentation session is setup through the FragSessionSetup application command. 294

3.5 FragSessionStatusReq & Ans 295

This message can be transmitted by the server in a UNICAST or MULTICAST downlink 296
frame. 297
 298
 299

Size (bytes) 1

FragParam Payload FragStatusReqParam
Table 14: FragSessionStatusReq 300

 301
Where: 302
 303

bits 7:3 2:1 0

FragStatusReqParam
field

RFU FragIndex Participants

Table 15: FragSessionStatusReq FragStatusReqParam field 304

 305
Used by the fragmentation server to request receiver end-devices to report their current 306
defragmentation status. 307
 308
The receivers (in the case of multicast) SHOULD NOT answer this request all at the same 309
time because this would potentially generate a lot of collisions. The receivers MUST 310
therefore spread randomly their responses as specified by the BlockAckDelay field of the 311
FragSessionSetupReq command. 312
 313
The “participants” bit signals if all the fragmentation receivers should answer or only the 314
ones still missing fragments. 315
 316

Participant bit value 0 1

 Only the receivers still
missing fragments MUST
answer the request

All receivers MUST answer,
even those who already
successfully reconstructed
the data block

Table 16: FragSessionStatusReq FragStatusReqParam field participant bit 317

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 12 of 30 The authors reserve the right to change
specifications without notice.

 318
The end-devices respond with a FragSessionStatusAns message. The message payload 319
is: 320
 321

Size (bytes) 2 1 1

FragParam Payload Received&index MissingFrag Status
Table 17: FragSessionStatusAns 322

Where: 323
 324

bits 15:14 13:0

Received&index field FragIndex NbFragReceived
Table 18: FragSessionStatusAns Received&index field 325

bits 7:1 0

Status
field

RFU Not enough matrix memory. The defragmentation
process was aborted because the number of

missing fragments was greater than the available
memory matrix storage capacity

Table 19: FragSessionStatusAns Status field 326

 327
Used by the fragmentation receiver to report its defragmentation status for the fragmentation 328
session FragIndex. 329
 330
NbFragReceived is the total number of fragments received for this fragmentation session 331
since the session was created. 332
 333
MissingFrag is the number of independent coded fragments still required before being able 334
to reconstruct the data block. In the case where the block was already successfully 335
reassembled this field SHOULD be 0. If more than 255 fragments are missing, then 336
MissingFrag SHALL be set to 255. 337
 338
 339
As described in the “FragSessionStatusReq” command, the receivers MUST respond with 340
a pseudo-random delay as specified by the BlockAckDelay field of the 341
FragSessionSetupReq command. 342

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 13 of 30 The authors reserve the right to change
specifications without notice.

4 File integrity check and authentication 343

 344
The payloads transported by the fragmentation/defragmentation package are encrypted and 345
authenticated using the McAppSKey and McNwkSKey. However, those keys are identical in 346
all the end-devices of the multicast group. Because one of the group’s end-devices might be 347
compromised (the end-device might have been physically destroyed and the keys 348
extracted), those keys cannot be considered safe except if a tamper-proof secure element is 349
used to store them in ALL the end-devices of the group. 350
If that is not the case (no secure element is used), then an additional file integrity and 351
authentication step SHOULD take place. The integrity/authentication check corresponds to 352
making sure that the block reconstructed is exactly what the fragmentation server wanted to 353
send to the end-device and that this block has not been modified in any way through the 354
transport process. This goal may be achieved by different means: 355

1. Public/private cryptography certificate 356

2. Unicast exchange protected by Symmetric key 357

Solution 1 does not require any additional exchange and MAY use a standard HASH + 358
certificate mechanism based on RSA or ECC cryptography. This solution is 359
RECOMMENDED when the fragmentation layer is used to transport a firmware upgrade file. 360
That solution increases the size of the file transported (cryptography/certificate overhead). 361
For ECC that overhead is typically around 100bytes. 362
Solution 2 relies on a unicast exchange between the end-device and the fragmentation 363
server. The messages exchanged contain a HASH of the reconstructed file and MUST be 364
protected by an end-device specific key. In that way even if the multicast keys are 365
considered unsafe, the final authentication is made on an end-device per end-device basis 366
and cannot be compromised. That solution has no file size overhead but requires an 367
additional unicast exchange between each end-device and the AS. 368
The choice between the two solutions is application specific and this is currently considered 369
out-of-scope of this specification. Following versions of this specification will provide a 370
recommended file integrity/authentication verification process. 371

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 14 of 30 The authors reserve the right to change
specifications without notice.

5 Fragmentation algorithm 372

This section will contain a description of the fragmentation / coding / decoding / 373
defragmentation algorithm proposed. 374
The coding adds some redundancy to the fragment transmitted such that an end-device 375
missing some of the multicasted fragments can still reconstruct the complete data block. 376
The maximum ratio of lost fragment that can be tolerated is a parameter selected by the 377
“fragmentation server” preparing the multicast. 378
 379

 380

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 15 of 30 The authors reserve the right to change
specifications without notice.

APPENDIX: DATA BLOCK FRAGMENTATION 381

FORWARD ERROR CORRECTION CODE 382

PROPOSAL 383

 384
 385

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 16 of 30 The authors reserve the right to change
specifications without notice.

6 Introduction 386

 387
This appendix proposes a simple Forward Error Correction (FEC) code to be used for 388
fragmented transport of large binary files over LoRaWAN. As all radio link, a LoRaWAN link 389
exhibit a certain ratio of lost frames. Adding FEC in the file fragmentation process allows an 390
end-device to autonomously recover the full file even in the presence of lost frames without 391
having to systematically request the missing fragments. 392
The transmitter of the fragmented binary file can select to add an arbitrary redundancy to the 393
transmission content through this FEC. 394
For example a 10% redundancy added by the fragmentation transmitter allows the receiver 395
performing the defragmentation to loose roughly 10% of the incoming frames and still be 396
able to reconstruct the binary file. 397
 398
 399
Fragmentation may be used for many different applications, for example: 400

• Broadcasting a firmware upgrade to a group of end-devices (Network -> end-devices 401
downlink multicast) 402

• Fragmenting a huge data block in several smaller messages before sending it up to 403
the network (end-device -> Network uplink) and make sure all the data has been 404
successfully received. Example: A sensor collects frequent data for a long time, and 405
then compresses it into one huge block that is sent using fragmentation, as soon as 406
the server is able to reconstruct the full block the end-device receives a notification 407
and stops transmitting. 408
 409

 410
The coding scheme proposed here is directly derived from the 1963 thesis of Robert 411
Gallager describing Parity-Check code: This thesis can be accessed at 412
http://www.inference.phy.cam.ac.uk/mackay/gallager/papers/ldpc.pdf 413
 414

http://www.inference.phy.cam.ac.uk/mackay/gallager/papers/ldpc.pdf

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 17 of 30 The authors reserve the right to change
specifications without notice.

7 Fragment error coding 415

 416
The initial data block that needs to be transported must first be fragmented into M data 417
fragments of arbitrary but equal length. The length of those fragments has to be chosen to 418
be compatible with the maximum applicative payload size available. 419
The actual applicative payload length will be: 420

fragLen + 2 bytes 421
 422

Where fragLen is the byte length of each fragment plus 2 bytes of fragmentation header 423
(containing Index & N, see 3.4) 424
 425
Those original data fragments are named uncoded fragments and are noted Bn 426
 427
The full data block to be transported consists therefore of the concatenation of the Bn 428
uncoded fragments [B1 : B2 :… :Bm] 429
 430

The coded fragments are noted PM
N and are derived from the uncoded fragments. 431

PM
N is the Nth coded fragment from a fragmentation session containing M (B1 to Bm) 432

uncoded fragments. The coded fragments PM
N all have exactly the same byte length than the 433

uncoded (Bn) fragments. 434
To allow the original uncoded fragments reconstruction on the receiving end of the link even 435
in presence of arbitrary packet loss, the transmitter (performing the fragmentation) adds 436
redundancy. Therefore N might be greater than M, meaning that the sender may send more 437
coded fragments than the total number of uncoded fragments to enable the reconstruction 438
on the receiving end in presence of packet loss. The ratio between M and the number of 439
actually sent coded fragments is called coding ratio (or redundancy factor) and noted CR 440
 441

The coded fragments PM
N are constructed by performing a bit per bit Xor operation between 442

different subset of the uncoded fragments. The Xor operator is noted +. 443
 444
 445
Each coded fragment is defined as : 446

PM
N = 𝐶𝑀

𝑁(1). 𝐵1 + 𝐶𝑀
𝑁(2). 𝐵2+ . . + 𝐶𝑀

𝑁(𝑀). 𝐵𝑀 447

 448

Where 𝐶𝑀
𝑁(𝑖) is a function of M,N and i and whose value is either 0 or 1. 449

• 0. 𝐵1 is a binary word of the same length than the fragment 𝐵1 with all bits = 0. 450

• 1. 𝐵1 is equal to 𝐵1 451
 452

The binary vector 𝐶(𝑁, 𝑀) = [𝐶𝑀
𝑁(1), 𝐶𝑀

𝑁(2), . . . , 𝐶𝑀
𝑁(𝑀)] of M bits is a function of M and N and 453

is given by a function matrix_line(M,N) which will be described later. 454
 455
It is sufficient to know that this function generates either: 456

• If N<=M , a vector of length M with a single one at position N, all other bits = 0 457

• If N>M : a parity check vector containing statistically as many zeros as ones in a 458
pseudo-random order. 459

The parity check matrix, as defined by Gallager in his 1963 thesis, is an MxN matrix 460

containing the 𝐶𝑁
𝑖 on column i and line N. 461

 462
The following picture illustrates an example of such a matrix generated by the proposed 463
function for M=26 and with a coding ratio CR=1/2 , this matrix has 26/CR = 52 lines. Id, it 464
allows the creation of 52 coded fragments from the 26 original uncoded fragments. 465

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 18 of 30 The authors reserve the right to change
specifications without notice.

 466

 467
Figure 1 : 26x52 parity check matrix 468

 469
 470

 471
We can see that the parity matrix consists first of an MxM identity matrix followed by a parity 472
control MxM matrix. 473

The coded fragment PM
N is therefore the bit-wise Xor of the uncoded fragment 𝐵𝑖 such that 474

𝐶𝑀
𝑁(𝑖) is non-zero. The coded fragments have exactly the same bit length than the uncoded 475

fragments. 476
 477
 478
Step by Step encoding example: 479
The transmitter must send 2000 bytes allowing up to 50% packet error rate on the radio link. 480
A coding ratio of ½ is selected. For this purpose the 2000 bytes data block will be 481
segmented in 100 fragments of 20 bytes each , each frame will transport 1 fragment. The 482
transmitter will send 100/CR = 200 coded fragments. We will see that the receiver will be 483
able to decode as soon as it receives ~103 frames out of the 200 (depending on the exact 484
combination of frames lost). 485
 486

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 19 of 30 The authors reserve the right to change
specifications without notice.

First split the 2000 bytes into 100 uncoded fragments of 20 bytes each, B1 to B100. 487
 488
To generate the first coded fragment. 489
First generate the first line of the parity check matrix by calling C = matrix_line(1,100) 490
Then perform a bitwise Xor operation between all the uncoded fragments corresponding to a 491
1 in the C parity check vector. 492
 493

In this case C = 1’b1 followed by 99 zeros, the first coded fragment P100
1 = B1 494

 495
When the transmitter reaches the frame number 101 , we have for example: 496
C= matrix_line(101,100) = 100’b0110010………; 497

Therefore P100
101 = B2 + B3 +B6 + ……; 498

Where + is the bit-wise Xor operator 499
 500

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 20 of 30 The authors reserve the right to change
specifications without notice.

8 Fragment decoding and reassembling 501

 502
The receiver of a fragmentation session must perform the following operations. 503
 504
For each frame received extract the coded fragment and its index. 505
 506
The receiver also needs to create a null binary A = MxM bit matrix structure in his memory. 507
 508
Then process those fragments one by one. 509
 510
 511

1. For each new fragment PM
N , first fetch the corresponding line of the parity check 512

matrix : C=matrix_line(N,M) 513
2. Proceed from left to right along the C vector (𝑖 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑀) : For each entry 514

𝐶𝑖 equal to 1, check if the line 𝑖 of the matrix A contains a 1 in row 𝑖. If yes, perform a 515

Xor between line 𝑖 of matrix A “A(𝑖)“ and the vector C and store the result in C. Also 516

perform a xor between PM
N and the coded fragment stored at position 𝑖 in the 517

fragment memory store 𝑆𝑖 and update PM
N with the result. 518

3. Once this process is finished there are two options: 519
a. Either C now contains only zeros, in that case just get rid of the coded 520

fragment PM
N; it isn’t bringing any new information 521

b. The vector C is non-null : write it in the matrix A at the line 𝑖 corresponding to 522

the first non-zero element of C. Also add the modified PM
N fragment to the 523

memory store at position 𝑖 : 𝑆𝑖 524
4. Loop to 1 until all lines of the matrix A have been updated. The matrix A will have 525

only 1’s on its diagonal and will be a triangular matrix with only 0’s on the lower left 526
half. The fragment memory store will contain exactly M fragments. 527

5. Starting from matrix line 𝑖 = M-1 down to 1, fetch the 𝑖𝑡ℎ line of matrix A : A(i). The 528
line A(i) has a 1 at position 𝑖 and only zeros on the left. For any 1 at position j> 𝑖 529
perform a xor between 𝑆𝑖 and 𝑆𝑗 and update 𝑆𝑖 with the result. 530

6. The fragment memory store now contains the original uncoded fragments 𝑆𝑖 = 𝐵𝑖 531
7. Reassemble the data block by concatenating all the uncoded fragments. If the 532

fragment memory store is actually allocated as a continuous memory range, then this 533
step is not even necessary, because the original data block consists of 𝑆1 : 𝑆2: …: 𝑆𝑀 534
where : represents the concatenation operator. 535

 536
 537

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 21 of 30 The authors reserve the right to change
specifications without notice.

 538
Figure 2 : 32x32 matrix A built during decoding process 539

 540
 541

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 22 of 30 The authors reserve the right to change
specifications without notice.

9 Performance of the coding scheme. 542

 543
As described in Gallager’s thesis Parity Check codes have a non-zero statistical overhead 544
independent of the coded word length. In our case the word length used is M. The actual 545
overhead depends on the way the parity check matrix is built. To be able to reconstruct the 546
uncoded fragments the receiver must receive at least M linearly independent coded 547
fragments. Said in another way, the parity check matrix reconstructed by the receiver based 548
on the fragments received must be of rank M. 549
This condition is fulfilled ideally as soon as M coded fragments have been received. But 550
sometimes, those M received first fragments are not all independent and the matrix resulting 551
rank is <M. in that case, more coded fragments need to be received until the rank of the 552
parity check matrix becomes M. 553
 554
The following graph shows the probability of the matrix being of rank <M with a number of 555
received fragment varying from M to M+10. The 5 curves corresponds to M=32/40/48/56/64 556
which are the number of uncoded fragments used in this proposal. 557
 558
 559

 560
It can be seen that when the number of coded fragment received equals M, the matrix 561
cannot be inverted (is not of rank M) 70% of the cases. But this probability falls very rapidly 562
with a few additional received fragments. With M+7 fragments the matrix can be inverted in 563
99% of the occurrences. In takes in average M+2 coded fragments to recover the original 564
data block. The proposed fragmentation therefore works better (with a lower statistical 565
overhead) with a larger number of fragments. This coding scheme with a fixed overhead is 566
therefore close to ideal performance when the number of fragment is large (>100) , because 567
adding 2 fragments on a 100 fragments session only represent 2% relative statistical 568
overhead. The overhead increases when the number of fragments is lower. This coding 569

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 23 of 30 The authors reserve the right to change
specifications without notice.

scheme should not be used for less than 20 fragments (the average overhead is 10% in that 570
case). 571
 572

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 24 of 30 The authors reserve the right to change
specifications without notice.

10 End-device memory requirement 573

 574
This coding scheme has been optimized to allow the transportation of large binary file with 575
minimum memory overhead on the receiving end (performing the defragmentation). 576
The following formula gives the decoding memory requirements for an optimized end-device 577
implementation expressed in Bytes on TOP of the memory required to store the final 578
reconstructed data block. 579

Example: a 50kbytes data block must be received. The end-device 580
requires 50kbytes of available memory + the value given by the 581
following formula 582

 583
For a data block fragmented using M fragments, let L be the number of coded fragments 584

lost by the end-device amongst the first M coded fragments. (The fragments PM
1 to PM

M). 585

 586
The required defragmentation memory overhead is a function of the maximum L value that 587
the end-device is designed to tolerate. Interestingly, the memory overhead is NOT a function 588
of the total number of fragments used to convey the data block. This is because the 589
defragmentation implementation is optimized to use the fact that the first M fragments 590

actually contain the original uncoded data block (PM
i = BM

i 𝑓𝑜𝑟 𝑖 ≤ 𝑀). 591
 592

Parity Matrix memory (bytes) = l.(l+1)/2/8 + 2.l , where l is the maximum value of L that the 593
end-device tolerates (if L>l , the defragmentation fails and is aborted) 594

The following table gives a few numerical examples. 595
 596

l Parity matrix
memory

32 130

40 183

48 243

56 312

64 388

 597
 598
The total memory requirement is the sum of the full data block size and the parity matrix 599
memory size. 600

Example: a 50kbytes data block must be received, as 1000x50bytes 601
fragments. The end-device is designed to be able to withstand the loss 602
of 64 fragments out of the first 1000 transmitted (l=64). The end-device 603
requires 50kbytes of available memory + 388bytes to store the parity 604
matrix 605

 606
 607
The data block can be reassembled in the memory directly at its final address (this means 608
directly in the FLASH memory space for most end-devices), so there is no need for an 609
additional “data block” swap memory space. 610
The parity matrix memory space can be erased and reused once the defragmentation is 611
finished. 612
 613

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 25 of 30 The authors reserve the right to change
specifications without notice.

For the encoding process, there is no need to store the parity matrix so the required memory 614
simply corresponds to the data block to be segmented and transmitted plus a very little fixed 615
overhead for temporary calculations. 616
 617
 618

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 26 of 30 The authors reserve the right to change
specifications without notice.

11 Preliminary Matlab code 619

 620
 621
This matlab code generates a list of coded fragments from an arbitrary binary file 622
Notations: 623
w = 32; %the number of fragments into which the binary file is split 624
fragment_size=10; %the size of each fragment in bytes 625
DATA; %a vector of bytes = the binary file to be sent. The length must be 626
w*fragment_size 627

 628
 629
 630
Encoding process in matlab 631
 632
 633
w = 32; %number of uncoded fragments 634
fragment_size=10; %nb of bytes per fragment 635
fprintf('\n number of uncoded fragments:%d, fragment size (bytes):%d bytes\n total 636
broacast size %d bytes\n',w,fragment_size,w*fragment_size); 637
 638
DATA = mod([0:w*fragment_size-1],256); %arbitrary binary file to be sent 639
 640
% start of the fragmentation and encoding process 641
% UNCODED_F is an array of uncoded fragments 642
UNCODED_F = zeros(w,fragment_size); 643
for k=1:w 644
 UNCODED_F(k,:) = DATA((k-1)*fragment_size+1:k*fragment_size); 645
end 646
 647
 648
% now encode. 649
% we will create 2w CODED fragments, this number is arbitrary. Those can be 650
generated by the transmitter on the fly one by one. 651
CODED_F = []; % this will contain the array of 2w coded fragments 652
for y=1:w 653
CODED_F(y,:) = UNCODED_F(y,:); %the first w coded fragments are equal to the 654
uncoded fragments (binary data without coding) 655
end 656
%then we add w parity check fragments 657
for y=1:w 658
 s=zeros(1,fragment_size); 659
 A = matrix_line(y,w); %line y of w.w matrix 660
 for x=1:w 661
 if (A(x) == 1) %if bit x is set to 1 then xor the corresponding fragment 662
 s = bitxor(s,UNCODED_F(x,:)); 663
 end 664
 end 665
 CODED_F = [CODED_F ; s]; % add the resulting coded fragment to the list 666
end 667

 668
 669
Matlab code of the matrix_line function generating a parity check vector: 670
%this funciton returns line N of the MxM parity matrix 671
function matrix_line = matrix_line(N,M) 672
matrix_line = zeros(1,M); 673
s=0; 674
 675
% we must treat powers of 2 differently to make sure mtrix content is close 676
% to random . Powers of 2 tend to generate patterns 677
if (M == 2^floor(log2(M))) % if M is a power of 2 678

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 27 of 30 The authors reserve the right to change
specifications without notice.

 m=1; 679
else 680
 m=0; 681
end 682
 683
 684
x= 1+1001*N; %initialize the seed differently for each line 685
nb_coeff=0; 686
while (nb_coeff<floor(M/2)) % will generate a line with M/2 bits set to 1 (50%) 687
 r=2^16; 688
 while (r>=M) %this can happen if m=1, in that case just try again with a 689
different random number 690
 x=prbs23(x); 691
 r=mod(x, M+m); %bit number r of the current line will be switched to 1 692
 end 693
 694
 matrix_line(r+1) = 1; %set to 1 the column which was randomly selected 695
 nb_coeff = nb_coeff + 1; 696
end 697
 698

 699
 700
The prbs23() function implements a PRBS generator with 2^23 period. 701
%standard implementation of a 23bit prbs generator 702
function r=prbs23(start) 703
x= start; 704
b0 = bitand(x,1); 705
b1 = bitand(x,32)/32; 706
x = floor(x/2) + bitxor(b0,b1)*2^22; 707
r=x; 708

 709

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 28 of 30 The authors reserve the right to change
specifications without notice.

12 Glossary 710

 711
AES Advanced Encryption Standard 712
AS Application Server 713
FEC Forward Error Correction 714
 715
TBD To Be Done 716
 717

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 29 of 30 The authors reserve the right to change
specifications without notice.

13 Bibliography 718

13.1 References 719

[LoRaWAN 1.0.2]: LoRaWANTM 1.0.2 Specification, LoRa Alliance, July 2016 720

[LoRaWAN 1.1]: LoRaWANTM 1.1 Specification, LoRa Alliance, October 11, 2017 721

[LoRaWAN_Remote_Multicast_Setup]: LoRaWAN Remote Multicast Setup Specification 722
v1.0.0, LoRa Alliance, September 10, 2018 723

 724

LoRaWAN Fragmented Data Block

Transport v1.0.0 Specification

©2018 LoRa Alliance™ Page 30 of 30 The authors reserve the right to change
specifications without notice.

14 NOTICE OF USE AND DISCLOSURE 725

Copyright © LoRa Alliance, Inc. (2018). All Rights Reserved. 726

The information within this document is the property of the LoRa Alliance (“The Alliance”) 727
and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual 728
Property Rights (IPR) Policy and Membership Agreements. 729

Elements of LoRa Alliance specifications may be subject to third party intellectual property 730
rights, including without limitation, patent, copyright or trademark rights (such a third party 731
may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall 732
not be held responsible in any manner for identifying or failing to identify any or all such third 733
party intellectual property rights. 734

This document and the information contained herein are provided on an “AS IS” basis and 735
THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING 736
BUT NOT LIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION 737
HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUT 738
LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, 739
COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF 740
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR 741
NONINFRINGEMENT. 742

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF 743
BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY 744
OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL, PUNITIVE OR 745
CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN 746
CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, 747
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. 748

The above notice and this paragraph must be included on all copies of this document that 749
are made. 750

LoRa Alliance™ 751
5177 Brandin Court 752
Fremont, CA 94538 753
United States 754

Note: All Company, brand and product names may be trademarks that are the sole property 755
of their respective owners. 756

	1 Conventions
	2 Introduction
	3 Downlink Fragmentation Transport Message Package
	3.1 PackageVersionReq & Ans
	3.2 FragSessionSetupReq & Ans
	3.3 FragSessionDeleteReq & Ans
	3.4 Downlink Data Fragment message
	3.5 FragSessionStatusReq & Ans

	4 File integrity check and authentication
	5 Fragmentation algorithm
	Appendix: Data block fragmentation forward error correction code proposal
	6 Introduction
	7 Fragment error coding
	8 Fragment decoding and reassembling
	9 Performance of the coding scheme.
	10 End-device memory requirement
	11 Preliminary Matlab code
	12 Glossary
	13 Bibliography
	13.1 References

	14 NOTICE OF USE AND DISCLOSURE

