# LoRaWAN® ENABLES SMART ELECTRICITY METERS IN INDIA

NIMISH YEDURKAR
MICROCHIP PRINCIPAL EMBEDDED SOLUTION ENGINEER

LoRaWAN<sup>®</sup> Live! New Delhi, India October 17, 2019













### Use cases and benefits:

- Meter-to-cash services
- Remote switch control
- Eliminate electricity theft
- Outage management
- Integration of renewable or distributed energy resource systems
- Storage and demand response programs





- Low power operation as compared to other technologies
- Factory commissioning
- Easy maintenance
- True IOT network
- Highly secure network, with help of secure element





- IS16444 compatible meter
- Large number of tamper requirements
- Large load-survey data
- Large billing data from meter to server





### India Smart Meter LoRaWAN® Challenges

7

IS16444 packet size is large

```
Instantaneous Readings: (108+ bytes)
                                                          าก
10/10/2019 12:31:15.997 [TX] - 7E 00 1E 10 00 00 00 00 00 00 FF FF FF FE 00 00 24 43 50 47 45 54 10 00 FF FF
FF FF 40 00 BC A6 AF
10/10/2019 12:31:16.108 [RX] - 7E 00 68 10 00 00 00 00 00 00 00 FF FE 00 00 24 43 50 50 53 48 5A 00 FO 2E
                                                          eading
• 01 00 40 00 E8 63 4A 27 00 00 00 00 00 00 52 09 00 00 00 00 00 00 F4 01 00 00 00 00 00 00 08 00 0F D3 00
Load-survey Example: (86+ bytes)
                   10 10 00 00 00 00 00 00 00 00
Billing Data Example: (232+ bytes)
' 10/10/2019 12:33:08.860 [TX] - 7E 00 1E 10 00 00 00 00 00 00 FF FF FF FE 00 00 24 43 50 47 45 54 10 00 FF FF
FF FF 43 00 BC 56 FC 7E 00 1E 10 00 00 00 00 00 00 FF FF FF FE 00 00 24 43 50 41 43 4B 10 00 FF FF FF FF 43
                                                          /tes
00 CE F1 60
10/10/2019 12:33:10.384 [RX] - 7E 00 E4 10 00 00 00 00 00 00 00 FF FE 00 00 24 43 50 44 41 54 D6 00 F0 2E
                                                          is 75
```





LoRaWAN packet size for India



- Atlist SF8 network required for single packet data transfer
- Fragmentation is another option
  - For accurate fragment reception, confirm packet required
  - Confirm packet will increase overhead on gateway





Processing IS16444 packet at LoRa-Module end

#### Pros

- Data payload can be very small
- Data can be push to network sever
- No latency, if class C implemented
- Parodic Data delivery can be with UNCNF packet
- Tramper can be treated as events for NS and pushed by node stack

#### Cons

- Complex software implementation over LoRaWAN stack on small microcontroller
- One more specification required on top of IS16444
- Data specification required for application server
- Memory requirements will be higher at end LoRaWAN end node
- Data management and storage need to be implemented on LoRaWAN end node
- Multiple data packets need to send, for generating required data for end user
- CNF need to use for less data losses











- Simple Forward Error Correction (FEC) code can be used for fragmented transport, similar to FUOTA documented by LoRaWAN
- Adding FEC in the data fragmentation process allows an end-device/NS to autonomously recover the full data even in the
  presence of lost frames without having to systematically request the missing fragments
- With help of ADR and current data length number of redundancy packets and number of fragmentation can be automatically adjust
- · FEC data transfer is designed for UNCNF data transfer
- UNCNF data transfer will reduce overhead on gateway
- Standard "IS16444 Compliant Head End System (HES)" reading tools can be used at application server to get data
- Standard protocol from end to end, makes LoRaWAN end node less complex, easier for end user to process data
- · Each data packet can be encrypted and signed with secure element for better security
- No need of Specific data rate network, Fragmentation size can be of 51 bytes.
- Result in Simple Secure and connected Network for India energy meter market
- Cons: more data for simple packet.











LoRaWAN Serial Module Secure Element

Following Devices Used for Testing

- ATMSAMR35J18A based Module
- ATECC608A-SSHDA-B for secure Element.

- Simple connection
- Module connected to meter on serial port
- Fragmentation header at port 13
- Fragmentation TX port 12
- Fragmentation RX port 20
- LoRaWAN module will be transparent on rest of port number
  - Secure singed fragmented data transfer using secure element





- India smart meter data (larger data) requirements has been "taken into consideration"
- Data fragmentation and compression algorithm help to transfer larger data, like 1024/512/256 over LoRaWAN
- Secure element makes sure data will be secure for end point
- Fragmentation make possibilities to send data over UNCONF packet
- True intelligent fragmentation size with help of ADR, to transfer data faster and more reliably







## DEMO





### LoRaWAN® Live! New Delhi, India October 17, 2019

- ②LoRaAlliance
- in linkedin.com/company/loraalliance/
- marcom@lora-alliance.com
- lora-alliance.org