Gateway Test and Measurement Guidelines Issue 01
Copyright © 2021 LoRa Alliance, Inc. All rights reserved.

NOTICE OF USE AND DISCLOSURE
Copyright © LoRa Alliance, Inc. (2021). All Rights Reserved.

The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third-party intellectual property rights.

This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that are made.

LoRa Alliance®
5177 Brandin Court
Fremont, CA 94538
United States
Note: All company, brand and product names may be trademarks that are the sole property of their respective owners.
Gateway Test and Measurement Guidelines

Authored by members of the LoRa Alliance Technical Committee

Working Group Chair:
D.HUNT (LoRa Alliance)

Editor:
T. DANSHIN (TEKTELIC)

Contributors:
M. Gilbert, Kerlink; K. Howe, Senet; D. Hunt, LoRa Alliance; N. Klein, Multitech; R. Nemish, TEKTELIC; D. Tholl, TEKTELIC;

Issue: 01
Date: April 2021
Status: Approved
Contents

1 Conventions ... 7
2 Introduction ... 8
2.1 Scope .. 8
2.2 Gateway Classes and Deployment Environments ... 8
2.3 Test Matrix .. 9
2.4 Gateway Test Frequencies ... 10
2.5 Blocking Test Frequencies ... 11
2.6 Rx Intermodulation Test Frequencies .. 12
3 Test Set Ups .. 13
3.1 Set Up #1 ... 13
4 Tests Procedures and Performance Guidelines .. 14
4.1 Tx & Rx Operation and Survival with Open/Short Load .. 14
4.1.1 Applicability .. 14
4.1.2 Description .. 14
4.1.3 Performance Guidelines .. 14
4.1.4 Test Conditions ... 14
4.1.5 Test Procedure ... 14
4.1.6 Test Results ... 14
4.2 Measured and Reported RF Transmit Power Relative to Transmit Power 15
4.2.1 Applicability .. 15
4.2.2 Description .. 15
4.2.3 Performance Guidelines .. 15
4.2.4 Test Conditions ... 15
4.2.5 Test Procedure ... 15
4.2.6 Test Results ... 16
4.3 Tx Conducted Emissions Out-of-Band ... 17
4.3.1 Applicability .. 17
4.3.2 Description .. 17
4.3.3 Performance Guidelines .. 17
4.3.4 Test Conditions ... 17
4.3.5 Test Procedure ... 17
4.3.6 Test Results ... 18
4.4 Tx Intermodulation .. 19
4.4.1 Applicability .. 19
4.4.2 Description .. 19
4.4.3 Performance Guidelines .. 19
4.4.4 Test Conditions ... 19
4.4.5 Test Procedure ... 19
4.4.6 Test Results ... 20
4.5 Tx Frequency Error .. 21
4.5.1 Applicability .. 21
4.5.2 Description .. 21
4.5.3 Performance Guidelines .. 21
4.5.4 Test Conditions ... 21
4.5.5 Test Procedure ... 21
4.5.6 Test Results ... 21
4.6 Rx Sensitivity ... 22
4.6.1 Applicability .. 22
4.6.2 Description .. 22
4.6.3 Performance Guidelines .. 22
5.2.1 North America (for Tx Channel Occupied Bandwidth Measurements)
settings based on FCC KDB 558074 .. 37
5.2.2 North America (for Tx Conducted Emissions Out-of-Band Measurements)
settings based on FCC KDB 558074 .. 38
5.2.3 EU (for Tx Channel Occupied Bandwidth Measurements) settings based
on ETSI EN 300 220-1 .. 38
5.2.4 EU (for Tx Conducted Emissions Out-of-Band Measurements below
1GHz) .. 39
5.2.5 EU (for Tx Conducted Emissions Out-of-Band Measurements above
1GHz) .. 39
5.3 Test Equipment Examples .. 39
5.4 Interference Details by Region .. 41
5.5 Test Result Summary ... 42
6 Glossary .. 45
7 References .. 46
8 NOTICE OF USE AND DISCLOSURE .. 47

Tables
199 Table 2-1 Deployment Environments ... 8
200 Table 2-2 Recommended Test Matrix ... 9
201 Table 2-3 Gateway Test Frequencies ... 10
202 Table 2-4 Blocking Test Frequencies ... 11
203 Table 2-5 Rx Intermodulation Test Frequencies 12
204 Table 4-1 Test Results – Tx & Rx Operation and Survival with Open/Short Load
.. 14
205 Table 4-2 Transmitted and Reported Tx Power Performance Guidelines .. 15
206 Table 4-3 - Test Results - Measured and Reported RF Transmit Power Relative to Transmit
Power Setting .. 16
207 Table 4-4 Tx Conducted Emissions Out-of-Band 17
208 Table 4-5 3GPP Rx Bands and Test Frequencies 18
209 Table 4-6 - Test Results - Tx Conducted Emissions Out-of-Band 18
210 Table 4-7 Tx Intermodulation Settings ... 19
211 Table 4-8 - Test Results - Tx Intermodulation .. 20
212 Table 4-9 Tx Frequency Error Performance Guidelines 21
213 Table 4-10 - Test Results - Tx Frequency Error 22
214 Table 4-11 Rx Sensitivity Performance Guidelines 23
215 Table 4-12 - Test Results - Rx Sensitivity ... 25
216 Table 4-13 Rx Dynamic Range Performance Guidelines 26
217 Table 4-14 Test Results – Rx Dynamic Range .. 26
218 Table 4-15 Rx In-band Blocking Tolerated Interferer Power Performance Guidelines .. 27
219 Table 4-16 In-Band Blocking Interferer Settings 27
220 Table 4-17 Test Results – Rx In-Band Blocking/Selectivity 28
221 Table 4-18 Rx In-band Blocking Tolerated Interferer Power Performance Guidelines .. 29
222 Table 4-19 Out-of-band Interferer Settings ... 29
223 Table 4-20 Test Results – Rx Out-of-Band Blocking/Selectivity 30
224 Table 4-21 Rx Intermodulation Tolerated Interferer Power Performance Guidelines .. 31
225 Table 4-22 Interferer Settings ... 31
226 Table 4-23 Test Results – Rx Intermodulation 32
227 Table 4-24 Test Results – Cold Start ... 33
228 Table 5-1 Spectrum Analyzer Test Parameters – OBW Tests (North American type
gateways) .. 37
Table 5-2 Spectrum Analyzer Test Parameters – OOB Emissions (North American type gateways) ..38
Table 5-3 Spectrum Analyzer Test Parameters – OBW Tests (EU type gateways)38
Table 5-4 Spectrum Analyzer Test Parameters – OOB Emissions below 1GHz (EU type gateways) ..39
Table 5-5 Spectrum Analyzer Test Parameters – OOB Emissions above 1GHz (EU type gateways) ...39
Table 5-6 Test Equipment Examples ..39
Table 5-7 Additional Interference Details, Listed by Region [1] ...41
Table 5-8 Test Result Summary ..42

Figures

Figure 3-1 Transmit and Receive Test Set Up ..13
Figure 5-1: Transmitter Test Set Up ..35
Figure 5-2 Transmitter Intermodulation Test Set Up ...35
Figure 5-3: Receiver Test Set Up ..36
Figure 5-4: Receiver Interference Test Set Up ..37
1 Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

The octet order over the air for all multi-octet fields is big endian (Most significant byte is sent first).
2 Introduction

This document proposes a list of test procedures to measure the physical layer performance of LoRaWAN Gateways. The document defines what RF parameters to test and includes guidelines on how to measure them that will allow all gateways to be evaluated in a consistent manner so the results can be compared.

2.1 Scope

The scope of this document covers the practical evaluation of gateway RF performance. The intent is not to cover regulatory requirements but instead to define a set of tests and procedures that can be used to baseline gateway performance in typical deployment scenarios. These deployment scenarios, along with corresponding gateway RF performance guidelines, are described in a complementary LoRa Alliance whitepaper [1]. Where appropriate, these RF performance guidelines are included in the sections of this document for reference. Failure to meet these performance guidelines does not imply that a gateway is not suitable for the specific deployment environment of a particular end-customer.

2.2 Gateway Classes and Deployment Environments

To help end-customers evaluate their gateway products, vendors can choose and communicate the appropriate class identifier from Table 2-1 below that best represents the targeted deployment environment. RF performance guidelines in this document have been tailored for each class of gateway. Testing is performed under nominal humidity conditions. Relative humidity should be measured and recorded at the time of testing.

<table>
<thead>
<tr>
<th>Class Identifier</th>
<th>Deployment Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outdoor</td>
</tr>
<tr>
<td>2</td>
<td>Indoor</td>
</tr>
</tbody>
</table>
2.3 Test Matrix

The following abbreviations are used in Table 2-2:

- **E** - tested over the operating temperature range defined by the gateway vendor.
- **N** – tested at nominal temperature, nominal humidity and nominal input voltage
- **O** – optional test for a given gateway class

Table 2-2 Recommended Test Matrix

<table>
<thead>
<tr>
<th>Document Section</th>
<th>Test Case Description</th>
<th>Gateway Class (defined in Table 2-1)</th>
<th>Type of Test Output (Result or Pass/Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Tx & Rx Operation and Survival with Open/Short Load</td>
<td>N</td>
<td>N¹</td>
</tr>
<tr>
<td>4.2</td>
<td>Measured and Reported RF Transmit Power Relative to Transmit Power Setting</td>
<td>E</td>
<td>N (Opt E)</td>
</tr>
<tr>
<td>4.3</td>
<td>Tx Conducted Emissions Out-of-Band</td>
<td>N</td>
<td>O (N)</td>
</tr>
<tr>
<td>4.4</td>
<td>Tx Intermodulation</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>4.5</td>
<td>Tx Frequency Error</td>
<td>E</td>
<td>N (Opt E)</td>
</tr>
<tr>
<td>4.6</td>
<td>Rx Sensitivity</td>
<td>E</td>
<td>N (Opt E)</td>
</tr>
<tr>
<td>4.7</td>
<td>Rx Dynamic Range</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4.8</td>
<td>Rx In-Band Blocking/Selectivity</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4.9</td>
<td>Rx Out-of-Band Blocking/Selectivity</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4.10</td>
<td>Rx Intermodulation</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4.11</td>
<td>Cold Start</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>4.12</td>
<td>Time Accuracy</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

¹ Test is applicable only if gateway has an external antenna connector
2.4 Gateway Test Frequencies

Table 2-3 shows the list of primary test frequencies (TxF1, RxF1) for the test cases in this document. In addition, a second set of test frequencies (TxF2, RxF2) are defined for gateways intended for deployment in specific regions that support a large RF bandwidth.

Table 2-3 Gateway Test Frequencies

<table>
<thead>
<tr>
<th>Channel Plan</th>
<th>TxF1 (MHz)</th>
<th>TxF1 Modulation</th>
<th>TxF2 (MHz)</th>
<th>TxF2 Modulation</th>
<th>RxF1 (MHz)</th>
<th>RxF2 (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU868</td>
<td>869.525</td>
<td>SF7, 250kHz</td>
<td>868.1</td>
<td>SF12, 125kHz</td>
<td>868.3</td>
<td>N/A</td>
</tr>
<tr>
<td>US915</td>
<td>923.3</td>
<td>SF7, 500kHz</td>
<td>927.5</td>
<td>SF12, 500kHz</td>
<td>902.3</td>
<td>914.9</td>
</tr>
<tr>
<td>CN779</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>EU433</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>AU915</td>
<td>923.3</td>
<td>SF7, 500kHz</td>
<td>927.5</td>
<td>SF12, 500kHz</td>
<td>915.2</td>
<td>927.8</td>
</tr>
<tr>
<td>CN470</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>AS923-1</td>
<td>923.2</td>
<td>SF7, 250kHz</td>
<td>923.4</td>
<td>SF12, 125kHz</td>
<td>923.2</td>
<td>N/A</td>
</tr>
<tr>
<td>AS923-2</td>
<td>921.4</td>
<td>SF7, 250kHz</td>
<td>921.6</td>
<td>SF12, 125kHz</td>
<td>921.4</td>
<td>N/A</td>
</tr>
<tr>
<td>AS923-3</td>
<td>916.6</td>
<td>SF7, 250kHz</td>
<td>916.8</td>
<td>SF12, 125kHz</td>
<td>916.6</td>
<td>N/A</td>
</tr>
<tr>
<td>AS923-4</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>KR920</td>
<td>922.1</td>
<td>SF7, 125kHz</td>
<td>922.5</td>
<td>SF12, 125kHz</td>
<td>922.3</td>
<td>N/A</td>
</tr>
<tr>
<td>IN865</td>
<td>865.0625</td>
<td>SF7, 125kHz</td>
<td>865.985</td>
<td>SF12, 125kHz</td>
<td>865.4025</td>
<td>N/A</td>
</tr>
<tr>
<td>RU864</td>
<td>868.9</td>
<td>SF7, 125kHz</td>
<td>869.1</td>
<td>SF12, 125kHz</td>
<td>868.9</td>
<td>N/A</td>
</tr>
</tbody>
</table>
2.5 Blocking Test Frequencies

Additional notes on interference sources by region can be found in the appendix (Table 5-7).

Table 2-4 Blocking Test Frequencies

<table>
<thead>
<tr>
<th>Region</th>
<th>Desired Rx (MHz)</th>
<th>In-band Interferer Frequency (MHz)</th>
<th>Out-of-band Interferer Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low-side</td>
<td>High-side</td>
</tr>
<tr>
<td>EU868</td>
<td>868.5</td>
<td>867.5</td>
<td>869.525</td>
</tr>
<tr>
<td>US915</td>
<td>908.7</td>
<td>906.7</td>
<td>910.7</td>
</tr>
<tr>
<td>CN779</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>EU433</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>AU915</td>
<td>921.4</td>
<td>919.4</td>
<td>923.4</td>
</tr>
<tr>
<td>CN470</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>AS923-1</td>
<td>923.2</td>
<td>921.2</td>
<td>925.0</td>
</tr>
<tr>
<td>AS923-2</td>
<td>921.4</td>
<td>920.0</td>
<td>923.0</td>
</tr>
<tr>
<td>AS923-3</td>
<td>916.6</td>
<td>915.0</td>
<td>918.0</td>
</tr>
<tr>
<td>AS923-4</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>KR920</td>
<td>922.3</td>
<td>920.9</td>
<td>923.3</td>
</tr>
<tr>
<td>IN865</td>
<td>865.985</td>
<td>865.0</td>
<td>867.0</td>
</tr>
<tr>
<td>RU864</td>
<td>868.9</td>
<td>866.9</td>
<td>870.0</td>
</tr>
</tbody>
</table>

1 5MHz above anticipated ISM band extension to 933MHz
2.6 Rx Intermodulation Test Frequencies

Table 2-5 Rx Intermodulation Test Frequencies

<table>
<thead>
<tr>
<th>Region</th>
<th>OOB Interferer 1 (MHz)</th>
<th>OOB Interferer 2 (MHz)</th>
<th>Desired Rx (MHz)</th>
<th>Dominant Interferer</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU868</td>
<td>791.2</td>
<td>816.9</td>
<td>868.3</td>
<td>LTE B20 downlinks (5th order products)</td>
</tr>
<tr>
<td>US915</td>
<td>869.1.0</td>
<td>890.1</td>
<td>911.1</td>
<td>LTE B5 downlinks</td>
</tr>
<tr>
<td>CN779</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>EU433</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>AU915</td>
<td>935.1</td>
<td>955</td>
<td>915.2</td>
<td>GSM B8 downlinks</td>
</tr>
<tr>
<td>CN470</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>AS923-1</td>
<td>930.2</td>
<td>937</td>
<td>923.4</td>
<td>LTE B8 downlinks</td>
</tr>
<tr>
<td>AS923-2</td>
<td>930.2</td>
<td>938.8</td>
<td>921.6</td>
<td>LTE B8 downlinks</td>
</tr>
<tr>
<td>AS923-3</td>
<td>930.2</td>
<td>943.6</td>
<td>916.8</td>
<td>LTE B8 downlinks</td>
</tr>
<tr>
<td>AS923-4</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>LTE B8 downlinks</td>
</tr>
<tr>
<td>KR920</td>
<td>930.2</td>
<td>937.9</td>
<td>922.5</td>
<td>LTE B8 downlinks</td>
</tr>
<tr>
<td>IN865</td>
<td>870.5</td>
<td>875.015</td>
<td>865.985</td>
<td>LTE B5 downlinks</td>
</tr>
<tr>
<td>RU864</td>
<td>791.7</td>
<td>817.5</td>
<td>869.1</td>
<td>LTE B20 downlinks (5th order products)</td>
</tr>
</tbody>
</table>
3 Test Set Ups

3.1 Set Up #1

Power Supply

Gateway Under Test

Ethernet

Interference Generator

1-box LoRaWAN Test Solution

Spectrum Analyzer

PC

Ethernet Hub

Ethernet

2:1 Combiner

Directional Coupler (30dB)

RS232C

USB

Figure 3-1 Transmit and Receive Test Set Up
4 Tests Procedures and Performance Guidelines

4.1 Tx & Rx Operation and Survival with Open/Short Load

4.1.1 Applicability
Please refer to Table 2-2.

4.1.2 Description
To ensure the RF transmitter survives RF Cable or Antenna fault condition. To minimize test time, perform this test first, then perform the remainder of the tests in this document to confirm gateway transmitter and receiver circuitry is fully functional (i.e. hasn’t been damaged by this open/short test).

4.1.3 Performance Guidelines
No damage to the gateway under the test conditions.

4.1.4 Test Conditions
Operating frequencies and modulation: Please refer to Table 2-3.
RF power levels: Tx Power Max
Environmental and input voltage conditions: nominal temperature, humidity and input voltage

4.1.5 Test Procedure
1. Use Test Set up #1 or #A4.
2. Set Gateway to Tx Max power at frequency and modulation, TxF1
3. For half-duplex gateways set the transmit duty cycle to 10%. For full-duplex gateways, set the transmit duty cycle to greater than 98%.
4. Transmit at Tx Max for 5 min or until thermal stability of the device have been achieved into an RF Open circuit.
5. Repeat the same test with the RF short circuit.
6. Perform the remainder of the transmitter and receiver tests in this document to confirm gateway functionality.

4.1.6 Test Results

Table 4-1 Test Results – Tx & Rx Operation and Survival with Open/Short Load

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature range</th>
<th>Result (Pass/Fail)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Survival with Open/Short Load</td>
<td>Normal</td>
<td>Result confirmed by successful completion of subsequent tests</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Measured and Reported RF Transmit Power Relative to Transmit Power Setting

4.2.1 Applicability
Please refer to Table 2-2.

4.2.2 Description
To measure accuracy of transmit RF output power relative to manufacturer’s RF output power ratings across dynamic range and over deployment conditions. Deltas can be incorporated into the end to end RF link budget.

4.2.3 Performance Guidelines

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>Accuracy of Tx Power Output and Tx Power Report Relative to Manufacturer’s rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured at Nominal Temperature, Humidity, Input Voltage</td>
</tr>
<tr>
<td>Tx Power</td>
<td>Tx Power Min</td>
</tr>
<tr>
<td>Max¹</td>
<td>+1/-2dB</td>
</tr>
<tr>
<td>+2/-3dB</td>
<td>+3/-4dB</td>
</tr>
</tbody>
</table>

4.2.4 Test Conditions
Operating frequencies and modulation: Please refer to Table 2-3 for definition of TxF1 and TxF2 for the specific gateway under test.
RF power levels: Tx Max power, Tx Min Power (both as defined by manufacturer)
Environmental and input voltage conditions: Tested at nominal relative humidity, over the operating temperature range defined by the gateway vendor.

4.2.5 Test Procedure
1. Use Test Set up #1 or #A1.
2. Set test environment to lower bound of operational temperature range defined by gateway vendor. Note and record the relative humidity.
3. Set Gateway to Tx Power Max at operating frequency and modulation TxF1.

¹ Ensure that Measured Tx Power Max does not exceed local regulatory limits
4. Measure Tx power and record Tx power reported by Gateway.

5. Set Gateway to Tx Power Min and repeat the measurement.

6. Repeat steps 3 through 5 for operating frequency and modulation TxF2, if applicable for the gateway region under test.

7. Set test environment to the upper bound of operational temperature range defined by gateway vendor.

8. Repeat steps 3 through 6.

4.2.6 Test Results

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature Range</th>
<th>Result (dBm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Measured Max RF Tx Power – TxF1</td>
<td>Low</td>
<td></td>
<td>Mandatory for class 1 gateways, optional for class 2 gateways</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Measured Min RF Tx Power – TxF1</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.3</td>
<td>Measured Max RF Tx Power – TxF1</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.4</td>
<td>Measured Min RF Tx Power – TxF1</td>
<td>High</td>
<td></td>
<td>optional for class 2 gateways</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Measured Max RF Tx Power – TxF1</td>
<td>Nominal</td>
<td></td>
<td>N/A for class 1 gateways, mandatory for class 2 gateways</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Measured Min RF Tx Power – TxF1</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.7</td>
<td>Measured Max RF Tx Power – TxF2</td>
<td>Low</td>
<td></td>
<td>Mandatory for class 1 gateways</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Measured Min RF Tx Power – TxF2</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.9</td>
<td>Measured Max RF Tx Power – TxF2</td>
<td>High</td>
<td></td>
<td>optional for class 2 gateways</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Measured Min RF Tx Power – TxF2</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.11</td>
<td>Measured Max RF Tx Power – TxF2</td>
<td>Nominal</td>
<td></td>
<td>N/A for class 1 gateways, mandatory for class 2 gateways</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Measured Min RF Tx Power – TxF2</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Tx Conducted Emissions Out-of-Band

4.3.1 Applicability

Please refer to Table 2-2.

4.3.2 Description

The purpose of this test case is to quantify the impact of the transmitter spurious emissions on a co-located cellular e-NodeB receiver. To minimize the dynamic range requirements of the test equipment (spectrum analyzer), measurements will be made at the edge of the LoRaWAN passband and, if a cavity filter is present in the gateway, the result will be adjusted to take into account the rejection of this filter in the nearest cellular receive band.

4.3.3 Performance Guidelines

A typical LTE receiver noise floor is -116.4dBm/360kHz assuming a 2dB noise figure. With an antenna isolation of 45dB [1] and incorporating an additional 6dB of protection to limit the LTE receiver sensitivity degradation to 1dB, the transmitter spurious emissions guideline in the closest LTE uplink band is -77.4dBm/360kHz or equivalently, -83dBm/100kHz.

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>Cellular Band Emission Guideline (dBm/100kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-83</td>
</tr>
<tr>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

4.3.4 Test Conditions

Operating frequencies and modulation: Please refer to Table 2-3 for definition of TxF1 and TxF2 for the specific gateway under test.

RF power levels: Tx power Max (for EU region, test at 14dBm, TxF2 only)

Environmental and input voltage conditions: nominal temperature, humidity and input voltage

4.3.5 Test Procedure

1. Use Test Set up #1 or #A1.

2. Set Gateway to transmit a continuous (> 98% duty cycle) LoRa waveform at Tx Max power at frequency and modulation TxF1. Continuous transmission can be achieved by using utilities developed by Semtech, such as tx_continuous and send_pkt.

3. Select spectrum analyzer settings as per section 5.1. Set the measurement marker such that the edge of the resolution bandwidth touches the band edge of interest.

4. Measure and record Tx Conducted Emissions at the first emissions test frequency listed in Table 4-5.
5. Repeat the test at the second emissions test frequency, if applicable (see Table 4-5).

6. Repeat steps 2 through 7 for operating frequency and modulation TxF2, if applicable for the gateway region under test.

Table 4-5 3GPP Rx Bands and Test Frequencies

<table>
<thead>
<tr>
<th>Channel Plan</th>
<th>3GPP Rx Band</th>
<th>Emissions Test Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU868</td>
<td>LTE B20</td>
<td>862.0</td>
</tr>
<tr>
<td></td>
<td>LTE B8</td>
<td>880.0</td>
</tr>
<tr>
<td>US915</td>
<td>LTE B5</td>
<td>849.0</td>
</tr>
<tr>
<td>CN779</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>EU433</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>AU915</td>
<td>LTE B8</td>
<td>915.0</td>
</tr>
<tr>
<td>CN470</td>
<td>LTE B8</td>
<td>880.0</td>
</tr>
<tr>
<td>AS923 (-1 to -4)</td>
<td>LTE B8</td>
<td>915.0</td>
</tr>
<tr>
<td>KR920</td>
<td>LTE B8</td>
<td>915.0</td>
</tr>
<tr>
<td>IN865</td>
<td>LTE B8</td>
<td>880.0</td>
</tr>
<tr>
<td>RU864</td>
<td>LTE B20</td>
<td>862.0</td>
</tr>
</tbody>
</table>

4.3.6 Test Results

Table 4-6 - Test Results - Tx Conducted Emissions Out-of-Band

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature Range</th>
<th>Result (dBm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Conducted Emissions at first Emissions Test Frequency when gateway transmitting on TxF1</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.2</td>
<td>Conducted Emissions at second Emissions Test Frequency when gateway transmitting on TxF1</td>
<td>Nominal</td>
<td></td>
<td>If second Emissions Test Frequency defined in Table 4-5.</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Conducted Emissions at first Emissions Test Frequency when gateway transmitting on TxF2</td>
<td>Nominal</td>
<td></td>
<td>If applicable</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Conducted Emissions at second Emissions Test Frequency when gateway transmitting on TxF2</td>
<td>Nominal</td>
<td></td>
<td>If applicable</td>
</tr>
</tbody>
</table>
4.4 Tx Intermodulation

4.4.1 Applicability

Please refer to Table 2-2.

4.4.2 Description

To measure transmit emissions performance in the presence of strong Out of Band signal at the Gateway ANT port. This test is based on the Tx intermodulation examples in [1]. The examples are based on a gateway transmitter output third-order-intercept-point (OIP3) of 40dBm, minimum cavity filter interferer rejection of 40dB, an antenna to antenna isolation of 45dB, and LTE and LoRa antennas as described in sections 3.2.1 and 3.2.1 respectively, in [1].

4.4.3 Performance Guidelines

The spurious emissions should be less than the value specified in Table 4-7.

4.4.4 Test Conditions

Operating frequencies and modulation: as per table Table 4-7.
Desired Tx signal RF power level: as per table Table 4-7
Interferer levels are set as per Table 4-7.
Environmental and input voltage conditions: nominal temperature, humidity and input voltage

Table 4-7 Tx Intermodulation Settings

<table>
<thead>
<tr>
<th>Region</th>
<th>LoRaWAN Tx settings</th>
<th>CW Interferer settings</th>
<th>Intermodulation (IMD) Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq. (MHz)</td>
<td>Power (dBm)</td>
<td>SF</td>
</tr>
<tr>
<td>EU</td>
<td>869.525</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>NA</td>
<td>923.3</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>APAC/LATAM</td>
<td>923.4</td>
<td>27</td>
<td>12</td>
</tr>
</tbody>
</table>

4.4.5 Test Procedure

1. Use Test Set up #1 or #A2.
2. Set Gateway to transmit a continuous (> 98% duty cycle) LoRa waveform as specified in Table 4-7. Continuous transmission can be achieved by using utilities developed by Semtech, such as tx_continuous and send_pkt.
3. Inject the CW interferer signal defined in Table 4-7.
4. Select spectrum analyzer settings as per section 5.1. Set the measurement marker at the intermodulation tone frequency (see Table 4-7).
5. Measure the Tx intermodulation level in a 100kHz resolution bandwidth (RBW).

4.4.6 Test Results

Table 4-8 - Test Results - Tx Intermodulation

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature Range</th>
<th>Gateway Region</th>
<th>IMD Freq. (dBm)</th>
<th>IMD Power (dBm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1</td>
<td>Tx Intermodulation</td>
<td>Nominal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.5 Tx Frequency Error

4.5.1 Applicability

Please refer to Table 2-2.

4.5.2 Description

To purpose of this test is to measure the error in the center frequency of the transmit waveform. For correct LoRaWAN network functionality, an overall system frequency error budget has to be maintained. The performance guidelines below are based on assigning the majority of the budgeted frequency variation to end devices.

4.5.3 Performance Guidelines

<table>
<thead>
<tr>
<th>Gateway without GPS Synchronization: Performance Guidelines</th>
<th>Gateway with GPS Synchronization: Performance Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Error for a new gateway should not exceed 5 x 10^{-6} x Tx Frequency</td>
<td>Frequency Error for a new gateway should not exceed 0.1 x 10^{-6} x Tx Frequency</td>
</tr>
</tbody>
</table>

4.5.4 Test Conditions

Operating frequencies and modulation: Please refer to Table 2-3 for definition of TxF1 for the specific gateway under test.

RF power levels: Tx Power Max

Environmental and input voltage conditions: Tested at nominal relative humidity, over the operating temperature range defined by the gateway vendor.

4.5.5 Test Procedure

1. Use Test Set up #1 or #A1 (ensure spectrum analyzer has vector signal analyzer functionality)

2. Set test environment to lower bound of operational temperature range defined by gateway vendor. Note and record the relative humidity.

3. Set Gateway to transmit at Tx Max power at operating frequency and modulation TxF1.

4. Read the Vector Signal Analyzer Frequency Errors over 30 seconds and record the Max and Min values.

5. Set test environment to the upper bound of operational temperature range defined by gateway vendor.

6. Repeat steps 3 through 4.
4.5.6 Test Results

Table 4-10 - Test Results - Tx Frequency Error

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature Range</th>
<th>Result (Pass/Fail)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1</td>
<td>Tx Frequency Error – TxF1</td>
<td>Low</td>
<td></td>
<td>Mandatory for class 1 gateways, optional for class 2 gateways</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Tx Frequency Error – TxF1</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.3</td>
<td>Tx Frequency Error – TxF1</td>
<td>Nominal</td>
<td></td>
<td>N/A for class 1 gateways, mandatory for class 2 gateways</td>
</tr>
</tbody>
</table>
4.6 Rx Sensitivity

4.6.1 Applicability
Please refer to Table 2-2.

4.6.2 Description
Ensure Gateway supports a sufficient uplink range for its intended deployment environment.

4.6.3 Performance Guidelines
Table 4-11 Rx Sensitivity Performance Guidelines

<table>
<thead>
<tr>
<th>Rx Sensitivity Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>125kHz SF7: -126 dBm</td>
</tr>
<tr>
<td>125kHz SF10: -134 dBm</td>
</tr>
<tr>
<td>125kHz SF12: -139 dBm</td>
</tr>
<tr>
<td>500kHz SF8: -124 dBm</td>
</tr>
</tbody>
</table>

The sensitivity values provided in Table 4-11 are guidelines only and are based on gateway receiver incorporating a cavity filter with an insertion loss of approximately 2dB. For regions with stringent colocation requirements, gateways may have cavity filter insertion losses approaching 4dB – when testing these gateways, the sensitivity guidelines in the table should be adjusted accordingly.

4.6.4 Test Conditions
Operating frequencies: Please refer to Table 2-3 for definition of RxF1 and RxF2 for the specific gateway under test.
RF power levels: as per test procedure
Environmental and input voltage conditions: Tested at nominal relative humidity, over the operating temperature range defined by the gateway vendor.

4.6.5 Test Procedure
1. Use Test Set Up #1 or #A3. For test set up #1 follow the steps in the 1-box LoRaWAN test solution software, then skip to step 8 in the procedure below. For the alternative test set up #A3, follow steps 3 through 7 in the procedure below.
2. Set test environment to lower bound of operational temperature range defined by gateway vendor. Note and record the relative humidity.
3. Using LoRaWAN reference waveforms, set up the test so that 300 packets are transmitted by the vector signal generator.
4. Enable a packet logger utility on the gateway to count receive packets.
5. Turn on the signal generator at frequency RxF1 at a level of -100dBm and record the number of packets received with proper CRC. Calculate the PER. Also record the reported RSSI and SNR values.

6. Decrease the input Rx desired signal by 1dB and repeat step 4 until the PER is 100%.

7. Note RF power level at 10% PER. Based on a 95% confidence interval, the maximum number of packet errors allowed in a set of 300 packets is 19 to ensure that a packet error rate of 10% is not exceeded. Please refer to Table 11.2 in [2] for more details on Monte Carlo method and Poisson approximations to binomial distributions.

8. Repeat steps 3 through 7 for operating frequency RxF2, if applicable for the gateway region under test.

9. Set test environment to the upper bound of operational temperature range defined by gateway vendor.

10. Repeat steps 3 through 8.
4.6.6 Test Results

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Rx Freq.</th>
<th>Temp</th>
<th>Result (dBm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1</td>
<td>Rx Sensitivity – 125kHz SF7</td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.2</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region)</td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.3</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only)</td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.4</td>
<td>Rx Sensitivity – 125kHz SF7</td>
<td></td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.5</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region)</td>
<td>RxF1</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.6</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only)</td>
<td></td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.7</td>
<td>Rx Sensitivity – 125kHz SF7</td>
<td></td>
<td>Nom.</td>
<td></td>
<td>N/A for class 1 gateways, mandatory for class 2 gateways</td>
</tr>
<tr>
<td>4.6.8</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region)</td>
<td></td>
<td>Nom.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.9</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only)</td>
<td></td>
<td>Nom.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.10</td>
<td>Rx Sensitivity – 125kHz SF7</td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.11</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region)</td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.12</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only)</td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.13</td>
<td>Rx Sensitivity – 125kHz SF7</td>
<td>RxF2</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.14</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region)</td>
<td></td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.15</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only)</td>
<td></td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.16</td>
<td>Rx Sensitivity – 125kHz SF7</td>
<td></td>
<td>Nom.</td>
<td></td>
<td>N/A for class 1 gateways, mandatory for class 2 gateways</td>
</tr>
<tr>
<td>4.6.17</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region)</td>
<td></td>
<td>Nom.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.18</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only)</td>
<td></td>
<td>Nom.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.7 Rx Dynamic Range

4.7.1 Applicability

Please refer to Table 2-2.

4.7.2 Description

Gateway should handle a range of RF input power from Rx sensitivity limit to a high level to successfully handle high power in-band desired signal.

4.7.3 Performance Guidelines

Table 4-13 Rx Dynamic Range Performance Guidelines

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>Dynamic Range (dB, SF10, 125kHz BW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
</tr>
</tbody>
</table>

4.7.4 Test Conditions

Operating frequencies: Please refer to Table 2-3 for definition of RxF1 for the specific gateway under test.

RF power levels: range over which packet error rate < 10%

Environmental and input voltage conditions: nominal temperature, humidity and input voltage

4.7.5 Test Procedure

1. Use Test Set Up #1 and follow 1-box LoRaWAN test solution software or use Test Set Up #A2 and follow the procedure below.

2. Measure gateway Rx Sensitivity frequency RxF1 at SF10, 125kHz (10% PER) using procedure described in section 4.6.

3. Decrease input signal attenuation by 10dB and measure PER.

4. Decrease input signal attenuation until 10% PER is observed at high power. Add 10dB attenuation and repeat step 3 with 1dB steps until 10% PER is observed.

5. Calculate dynamic range. Dynamic range = RF power level from step 4 @ 10% PER minus Rx sensitivity power level.

4.7.6 Test Results

Table 4-14 Test Results – Rx Dynamic Range

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature range</th>
<th>Result (dB)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.1</td>
<td>Rx Dynamic Range</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2021 LoRa Alliance®
4.8 Rx In-Band Blocking/Selectivity

4.8.1 Applicability

Please refer to Table 2-2.

4.8.2 Description

Measure the ability of Gateway to receive a low level desired signal in the presence of a strong in-band interferer.

4.8.3 Performance Guidelines

Table 4-15 Rx In-band Blocking Tolerated Interferer Power Performance Guidelines

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>Tolerable In-band Interferer Power level (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-43</td>
</tr>
<tr>
<td>2</td>
<td>-69</td>
</tr>
</tbody>
</table>

4.8.4 Test Conditions

Operating frequencies: Please refer to Table 2-4.
RF power levels: Receiver input levels as per test procedure
Environmental and input voltage conditions: nominal temperature, humidity and input voltage

Table 4-16 In-Band Blocking Interferer Settings

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>In-band Interferer Type</th>
<th>In-band Interferer Power level at start of test (dBm)</th>
<th>Desired signal level power (dB above SF10 RF sensitivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CW</td>
<td>-60</td>
<td>6dB</td>
</tr>
<tr>
<td>2</td>
<td>CW</td>
<td>-85</td>
<td>6dB</td>
</tr>
</tbody>
</table>

4.8.5 Test Procedure

1. Use Test Set Up #1 or #A4 (see section 5.1.4)

2. Set up desired signal such that input RF level is above sensitivity limit by the amount shown in Table 4-16.
3. Turn on the interference signal at the low-side blocking frequency listed in Table 2-4. Refer to Table 4-16 for interferer RF power levels at the start of the test.

4. Set up the test so that 300 packets are transmitted by the vector signal generator. If using the 1-box LoRaWAN test solution limit the range of the sensitivity measurement to just around the RF level specified in step 2 above (this will optimize test time).

5. Enable a packet logger utility on the gateway to count receive packets and the number of errors. Record the packet error rate. If using the 1-box solution, run the sensitivity test.

6. Increase the RF power level of the interfering signal by 2dB. Repeat steps 2 through 5.

7. Note the Interferer power levels when the packet error rate (PER) crosses the 50% boundary

8. Stop the test when the packet error rate reaches 100%.

9. Repeat steps 3 through 8 for the high-side blocking frequency.

4.8.6 Test Results

Table 4-17 Test Results – Rx In-Band Blocking/Selectivity

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature range</th>
<th>Interferer Power @ 50% PER (dBm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.1</td>
<td>In-band blocking – low side blocker</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8.2</td>
<td>In-band blocking – high side blocker</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.9 Rx Out-of-Band Blocking/Selectivity

4.9.1 Applicability

Please refer to Table 2-2.

4.9.2 Description

To measure capability of gateway to reject very large cellular or paging transmitters outside of the ISM band of operation. The goal is to maintain sensitivity and range.

4.9.3 Performance Guidelines

Table 4-18 Rx In-band Blocking Tolerated Interferer Power Performance Guidelines

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>Tolerable Interferer Power level (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+10</td>
</tr>
<tr>
<td>2</td>
<td>-40</td>
</tr>
</tbody>
</table>

4.9.1 Test Conditions

Operating frequencies: please refer to Table 2-4.
RF power levels: as per test procedure
Environmental and input voltage conditions: nominal temperature, humidity and input voltage.

Table 4-19 Out-of-band Interferer Settings

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>Out-of-band Interferer Type</th>
<th>Interferer Power level at start of test(dBm)</th>
<th>Desired signal level power (dB above SF10 RF sensitivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CW</td>
<td>-20</td>
<td>6dB</td>
</tr>
<tr>
<td>2</td>
<td>CW</td>
<td>-60</td>
<td>6dB</td>
</tr>
</tbody>
</table>

4.9.2 Test Procedure

1. Use Test Set Up #1 or #A4 (see section 5.1.4)
2. Set up desired signal such that input RF level is above sensitivity limit by the amount shown in Table 4-19.
3. Turn on the interference signal at the low-side blocking frequency listed in Table 2-4. Refer to Table 4-19 for interferer RF power levels at the start of the test.

4. Set up the test so that 300 packets are transmitted by the vector signal generator. If using the 1-box LoRaWAN test solution limit the range of the sensitivity measurement to just around the RF level specified in step 2 above (this will optimize test time).

5. Enable a packet logger utility on the gateway to count receive packets and the number of errors. Record the packet error rate. If using the 1-box solution, run the sensitivity test.

6. Increase the RF power level of the interfering signal by 2dB. Repeat steps 2 through 5.

7. Note the Interferer power levels when the packet error rate crosses the 10% boundary.

8. Stop the test when the packet error rate reaches 100%.

9. Repeat steps 3 through 8 for the high-side blocking frequency.

4.9.3 Test Results

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature range</th>
<th>Interferer Power @ 10% PER (dBm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.1</td>
<td>Out-of-band blocking – low side blocker</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9.2</td>
<td>Out-of-band blocking – high side blocker</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.10 Rx Intermodulation

4.10.1 Applicability
Refer to Table 2-2 for applicability.

4.10.2 Description
Ensure Gateway can receive a desired Rx signal in presence of two strong out of band interferers. This test case exists to measure the gateway performance for the case where there are two strong out-of-band cellular transmitters near the gateway receiver.

4.10.3 Performance Guidelines
Table 4-21 Rx Intermodulation Tolerated Interferer Power Performance Guidelines

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>Tolerable In-Out of band Interferer 1 Power level (dBm)</th>
<th>Tolerable Out of band Interferer 2 Power level (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-141</td>
<td>-14</td>
</tr>
<tr>
<td>2</td>
<td>-60</td>
<td>-60</td>
</tr>
</tbody>
</table>

4.10.4 Test Conditions
Operating frequencies: refer to Table 2-5.
Desired signal RF power level: refer to Table 4-22.
Environmental and input voltage conditions: nominal temperature, humidity and input voltage
Interferer levels are set as per table Table 4-22. Interferer frequencies are set as per Table 2-5.

Table 4-22 Interferer Settings

<table>
<thead>
<tr>
<th>Gateway Class</th>
<th>In-band Interferer Type</th>
<th>In-band Interferer Power level at start of test (dBm)</th>
<th>Out-of-band Interferer Type</th>
<th>Out-of-band Interferer Power level at start of test (dBm)</th>
<th>Desired signal level power (dB above SF10 RF sensitivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CW</td>
<td>-30</td>
<td>LTE</td>
<td>-30</td>
<td>6dB</td>
</tr>
<tr>
<td>2</td>
<td>CW</td>
<td>-80</td>
<td>LTE</td>
<td>-80</td>
<td>6dB</td>
</tr>
</tbody>
</table>

4.10.5 Test Procedure
1. Use Test Set Up #1 or #A4 (see section 5.1.4)

1 Assumes Gateway RF filtering of 57dB and an IIP3 of -43dBm as described in [1].
2. Set up desired signal such that input RF level is above sensitivity limit by the amount shown in Table 4-22.

3. Turn on the two interference signals at the frequencies listed in Table 2-5. Refer to Table 4-22 for interferer RF power levels at the start of the test.

4. Set up the test so that 300 packets are transmitted by the vector signal generator. If using the 1-box LoRaWAN test solution limit the range of the sensitivity measurement to just around the RF level specified in step 2 above (this will optimize test time).

5. Enable a packet logger utility on the gateway to count receive packets and the number of errors. Record the packet error rate. If using the 1-box solution, run the sensitivity test.

6. Increase the RF power level of each interfering signal by 2dB. Repeat steps 2 through 5.

7. Note the Interferer power levels when the packet error rate crosses the 10% boundary (i.e. 19 errors in 300 packets for a 10% PER with 95% confidence).

8. Stop the test when the packet error rate reaches 100%.

4.10.6 Test Results

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature range</th>
<th>Interferer Power @ 10% PER (dBm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10.1</td>
<td>Rx Intermodulation</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2021 LoRa Alliance® The authors reserve the right to change specifications without notice.
4.11 Cold Start

4.11.1 Applicability
Please refer to Table 2-2.

4.11.2 Description
The purpose of this test case is to characterize the cold start performance of the gateway.

4.11.3 Performance Guidelines
See sections 4.2.3 and 4.11.3.

4.11.4 Test Conditions
Operating frequencies: Please refer to Table 2-3 for definition of TxF1 and RxF1 for the gateway under test.
RF power levels: Tx Power Max
Input voltage: nominal
Environmental conditions: minimum rated temperature

4.11.5 Test Procedure
1. Use Test Set Up #1 or #A1 and #A2.
2. Leave the unit under test unpowered at its minimum rated operating temperature for 6 hours or more.
3. Power up the unit under test and ensure the unit initializes correctly.
4. Let the unit warm up 30 minutes.
5. Execute Measured and Reported RF Transmit Power Relative to Transmit Power Setting test case (see section 4.1) at frequency TxF1.
6. Measure Rx sensitivity (see section 4.6) at frequency RxF1.

4.11.6 Test Results
Table 4-24 Test Results – Cold Start

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Temperature range</th>
<th>Result (Pass/Fail)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11.1</td>
<td>Cold Start</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.12 Time Accuracy

4.12.1 Applicability
Please refer to Table 2-2.

4.12.2 Description
The purpose of this test case is to characterize the Class B Beacon time accuracy.

4.12.3 Performance Guidelines
TBD

4.12.4 Test Conditions
Operating frequencies and modulation: Please refer to Table 2-3 for definition of TxF1 for the gateway under test.
RF power levels: Tx Power Max
Input voltage: nominal
Environmental conditions: nominal

4.12.5 Test Procedure
TBD

4.12.6 Test Results
TBD
5 Appendix

5.1 Alternative Test Set Ups

Note: The alternative test set ups use a large number of discrete test instruments and care must be taken to ensure all the RF levels at each point in the test fixture are optimized for each of the instruments. Failure to take these factors into account will result in inaccurate measurements. In most cases, the default Test Set up #1 is the preferred option.

5.1.1 Set Up #A1: Transmitter Test

A generalized test set up for RF transmitter testing is shown in Figure 5-1.

5.1.2 Set up #A2 Transmitter Intermodulation Test

A generalized test set up for RF Tx intermodulation testing is shown in Figure 5-2.
5.1.3 Set Up #A3 Receiver Test

The basic test set up for RF receiver testing is shown in Figure 5-3.

5.1.4 Set Up #A4 Receiver Interference Test

The test set up for RF receiver interference testing is shown in Figure 5-4. The notch filter is tuned to the desired LoRa Rx frequency to attenuate in-channel phase noise from CW1 and CW2.
5.2 Spectrum Analyzer Settings

5.2.1 North America (for Tx Channel Occupied Bandwidth Measurements) settings based on FCC KDB 558074

Table 5-1 Spectrum Analyzer Test Parameters – OBW Tests (North American type gateways)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBW</td>
<td>100kHz</td>
<td></td>
</tr>
<tr>
<td>VBW</td>
<td>300kHz</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>1MHz</td>
<td></td>
</tr>
<tr>
<td>Detector Mode</td>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>Max Hold</td>
<td></td>
</tr>
</tbody>
</table>
5.2.2 North America (for Tx Conducted Emissions Out-of-Band Measurements) settings based on FCC KDB 558074

Table 5-2 Spectrum Analyzer Test Parameters – OOB Emissions (North American type gateways)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBW</td>
<td>100kHz</td>
<td></td>
</tr>
<tr>
<td>VBW</td>
<td>300kHz</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>1MHz</td>
<td></td>
</tr>
<tr>
<td>Detector Mode</td>
<td>RMS</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>Average</td>
<td></td>
</tr>
</tbody>
</table>

5.2.3 EU (for Tx Channel Occupied Bandwidth Measurements) settings based on ETSI EN 300 220-1

Table 5-3 Spectrum Analyzer Test Parameters – OBW Tests (EU type gateways)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBW</td>
<td>3kHz</td>
<td></td>
</tr>
<tr>
<td>VBW</td>
<td>10kHz</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>400kHz</td>
<td></td>
</tr>
<tr>
<td>Detector Mode</td>
<td>RMS</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>Max Hold</td>
<td></td>
</tr>
</tbody>
</table>
5.2.4 EU (for Tx Conducted Emissions Out-of-Band Measurements below 1GHz)

Table 5-4 Spectrum Analyzer Test Parameters – OOB Emissions below 1GHz (EU type gateways)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBW</td>
<td>100kHz</td>
<td></td>
</tr>
<tr>
<td>VBW</td>
<td>300kHz</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>Band</td>
<td></td>
</tr>
<tr>
<td>Detector Mode</td>
<td>RMS</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>Max Hold</td>
<td></td>
</tr>
</tbody>
</table>

5.2.5 EU (for Tx Conducted Emissions Out-of-Band Measurements above 1GHz)

Table 5-5 Spectrum Analyzer Test Parameters – OOB Emissions above 1GHz (EU type gateways)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBW</td>
<td>1MHz</td>
<td></td>
</tr>
<tr>
<td>VBW</td>
<td>1MHz</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>Band</td>
<td></td>
</tr>
<tr>
<td>Detector Mode</td>
<td>RMS</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>Max Hold</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Test Equipment Examples

Table 5-6 Test Equipment Examples

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Vendor</th>
<th>Model Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-box LoRaWAN Test Solution</td>
<td>RedwoodComm</td>
<td>RWC5020M</td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Vendor</td>
<td>Model Number</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Interference Generator</td>
<td>RedwoodComm</td>
<td>RWC2020A</td>
<td></td>
</tr>
<tr>
<td>Spectrum Analyzer (Set Up #1)</td>
<td>SignalHound</td>
<td>BB60C</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>Instek</td>
<td>PSW 80-27</td>
<td>80Vdc, 27A</td>
</tr>
<tr>
<td>30dB Attenuator</td>
<td>Aeroflex/Weinschel</td>
<td>24-30-34</td>
<td>N-female, N-male connector</td>
</tr>
<tr>
<td>Cplr</td>
<td>Mini-circuits</td>
<td>ZAPD-1-N+</td>
<td>N-female connectors</td>
</tr>
<tr>
<td>Power Sensor</td>
<td>Keysight</td>
<td>9300A</td>
<td></td>
</tr>
<tr>
<td>Power Meter</td>
<td>Keysight</td>
<td>N1914A EPM</td>
<td></td>
</tr>
<tr>
<td>Spectrum Analyzer</td>
<td>Keysight</td>
<td>N9020A</td>
<td>8.4 GHz option</td>
</tr>
<tr>
<td>10dB Pad</td>
<td>Mini-circuits</td>
<td>VAT-10W2+</td>
<td>SMA-female, SMA-male connector (2W power handling)</td>
</tr>
<tr>
<td>Isolator (25dB)</td>
<td>RF-Lambda</td>
<td>RFLI-201-1</td>
<td></td>
</tr>
<tr>
<td>Directional Coupler (30dB)</td>
<td>Mini-circuits</td>
<td>ZADC-30-10-S+</td>
<td>SMA-female connectors</td>
</tr>
<tr>
<td>Amplifier</td>
<td>Mini-circuits</td>
<td>ZHL-1000-3W+</td>
<td>SMA-female connector</td>
</tr>
<tr>
<td>RF Power Meter</td>
<td>Keysight</td>
<td>9300A + N1914A EPM</td>
<td></td>
</tr>
<tr>
<td>Variable Attenuator</td>
<td>Mini-circuits</td>
<td>RCDAT-4000-120</td>
<td>USB/ETH programmable</td>
</tr>
<tr>
<td>Ethernet - GPIB</td>
<td>National Instruments</td>
<td>GPIB-USB-HS+</td>
<td></td>
</tr>
<tr>
<td>RF Signal Generator</td>
<td>Keysight</td>
<td>N5172B-503</td>
<td>9kHz-3GHz,</td>
</tr>
<tr>
<td>CW1</td>
<td>Keysight</td>
<td>N5172B-503</td>
<td></td>
</tr>
<tr>
<td>CW2</td>
<td>Keysight</td>
<td>N5172B-503</td>
<td></td>
</tr>
<tr>
<td>2:1 Combiner</td>
<td>Mini-circuits</td>
<td>ZAPD-2-272-N+</td>
<td>N-female connectors</td>
</tr>
<tr>
<td>Tunable Notch Filter</td>
<td>K&L Microwave</td>
<td>D3TNF-800/1000-0.2</td>
<td></td>
</tr>
</tbody>
</table>
5.4 Interference Details by Region

Table 5-7 Additional Interference Details, Listed by Region [1]

<table>
<thead>
<tr>
<th>Zone / Countries</th>
<th>Unlicensed bands</th>
<th>LTE UL bands</th>
<th>LTE DL bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>868 - 870MHz</td>
<td>832 – 862MHz</td>
<td>791 – 821MHz</td>
</tr>
<tr>
<td></td>
<td>863 - 873MHz</td>
<td>(B20)</td>
<td>(B20)</td>
</tr>
<tr>
<td></td>
<td>915 - 918MHz</td>
<td>880 – 915MHz</td>
<td>925 – 960MHz</td>
</tr>
<tr>
<td></td>
<td>915 - 921MHz</td>
<td>(B8)</td>
<td>(B8)</td>
</tr>
<tr>
<td>North America</td>
<td>902 - 928MHz</td>
<td>824 – 849MHz</td>
<td>869 – 894MHz</td>
</tr>
<tr>
<td></td>
<td>(B5)</td>
<td>(B5)</td>
<td>(B5)</td>
</tr>
<tr>
<td>Australia / New-Zealand</td>
<td>915 - 928MHz</td>
<td>880 – 915MHz</td>
<td>925 – 960MHz</td>
</tr>
<tr>
<td></td>
<td>(B8)</td>
<td>(B8)</td>
<td>(B8)</td>
</tr>
<tr>
<td></td>
<td>825 – 845MHz</td>
<td>870 – 890MHz</td>
<td>(B5)</td>
</tr>
<tr>
<td>Asia / Thailand, Taiwan and Singapore</td>
<td>920 - 925MHz</td>
<td>885 – 915MHz</td>
<td>930 – 960MHz</td>
</tr>
<tr>
<td></td>
<td>(B8)</td>
<td>(B8)</td>
<td>(B8)</td>
</tr>
<tr>
<td>Asia / Malaysia</td>
<td>919 - 924MHz</td>
<td>880 – 915MHz</td>
<td>925 – 960MHz</td>
</tr>
<tr>
<td></td>
<td>(B8)</td>
<td>(B8)</td>
<td>(B8)</td>
</tr>
</tbody>
</table>
5.5 Test Result Summary

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Survival with Open/Short Load</td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Measured Max RF Tx Power – TxF1 – low temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Measured Min RF Tx Power – TxF1 – low temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.3</td>
<td>Measured Max RF Tx Power – TxF1 – high temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.4</td>
<td>Measured Min RF Tx Power – TxF1 – high temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.5</td>
<td>Measured Max RF Tx Power – TxF1 – nominal temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.6</td>
<td>Measured Min RF Tx Power – TxF1 – nominal temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.7</td>
<td>Measured Max RF Tx Power – TxF2 – low temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.8</td>
<td>Measured Min RF Tx Power – TxF2 – low temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.9</td>
<td>Measured Max RF Tx Power – TxF2 – high temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.10</td>
<td>Measured Min RF Tx Power – TxF2 – high temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.11</td>
<td>Measured Max RF Tx Power – TxF2 – nominal temperature</td>
<td></td>
</tr>
<tr>
<td>4.2.12</td>
<td>Measured Min RF Tx Power – TxF2 – nominal temperature</td>
<td></td>
</tr>
<tr>
<td>4.3.1</td>
<td>Conducted Emissions at first Emissions Test Frequency when gateway transmitting on TxF1</td>
<td></td>
</tr>
<tr>
<td>4.3.2</td>
<td>Conducted Emissions at second Emissions Test Frequency when gateway transmitting on TxF1</td>
<td></td>
</tr>
<tr>
<td>4.3.3</td>
<td>Conducted Emissions at first Emissions Test Frequency when gateway transmitting on TxF2</td>
<td></td>
</tr>
<tr>
<td>4.3.4</td>
<td>Conducted Emissions at second Emissions Test Frequency when gateway transmitting on TxF2</td>
<td></td>
</tr>
<tr>
<td>4.4.1</td>
<td>Tx Intermodulation</td>
<td></td>
</tr>
<tr>
<td>4.5.1</td>
<td>Tx Frequency Error – TxF1 – low temperature</td>
<td></td>
</tr>
<tr>
<td>Test Number</td>
<td>Test Name</td>
<td>Result</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Tx Frequency Error – TxF1 – high temperature</td>
<td></td>
</tr>
<tr>
<td>4.5.3</td>
<td>Tx Frequency Error – TxF1 – nominal temperature</td>
<td></td>
</tr>
<tr>
<td>4.6.1</td>
<td>Rx Sensitivity – 125kHz SF7 – RxF1 – low temp</td>
<td></td>
</tr>
<tr>
<td>4.6.2</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region) – RxF1 – low temp</td>
<td></td>
</tr>
<tr>
<td>4.6.3</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only) – RxF1 – low temp</td>
<td></td>
</tr>
<tr>
<td>4.6.4</td>
<td>Rx Sensitivity – 125kHz SF7 – RxF1 – high temp</td>
<td></td>
</tr>
<tr>
<td>4.6.5</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region) – RxF1 – high temp</td>
<td></td>
</tr>
<tr>
<td>4.6.6</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only) – RxF1 – high temp</td>
<td></td>
</tr>
<tr>
<td>4.6.7</td>
<td>Rx Sensitivity – 125kHz SF7 – RxF1 - nominal temp</td>
<td></td>
</tr>
<tr>
<td>4.6.8</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region) – RxF1 - nominal temp</td>
<td></td>
</tr>
<tr>
<td>4.6.9</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only) – RxF1 - nominal temp</td>
<td></td>
</tr>
<tr>
<td>4.6.10</td>
<td>Rx Sensitivity – 125kHz SF7 – RxF2 – low temp</td>
<td></td>
</tr>
<tr>
<td>4.6.11</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region) – RxF2 – low temp</td>
<td></td>
</tr>
<tr>
<td>4.6.12</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only) – RxF2 – low temp</td>
<td></td>
</tr>
<tr>
<td>4.6.13</td>
<td>Rx Sensitivity – 125kHz SF7 – RxF2 – high temp</td>
<td></td>
</tr>
<tr>
<td>4.6.14</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region) – RxF2 – high temp</td>
<td></td>
</tr>
<tr>
<td>4.6.15</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only) – RxF2 – high temp</td>
<td></td>
</tr>
<tr>
<td>4.6.16</td>
<td>Rx Sensitivity – 125kHz SF7 – RxF2 - nominal temp</td>
<td></td>
</tr>
<tr>
<td>4.6.17</td>
<td>Rx Sensitivity – 125kHz, SF10 (NA Region) or SF12 (EU Region) – RxF2 - nominal temp</td>
<td></td>
</tr>
<tr>
<td>4.6.18</td>
<td>Rx Sensitivity – 500kHz SF8 (NA Region only) – RxF2 - nominal temp</td>
<td></td>
</tr>
<tr>
<td>4.7.1</td>
<td>Rx Dynamic Range</td>
<td></td>
</tr>
<tr>
<td>Test Number</td>
<td>Test Name</td>
<td>Result</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>4.8.1</td>
<td>In-band blocking – low side blocker</td>
<td></td>
</tr>
<tr>
<td>4.8.2</td>
<td>In-band blocking – high side blocker</td>
<td></td>
</tr>
<tr>
<td>4.9.1</td>
<td>Out-of-band blocking – low side blocker</td>
<td></td>
</tr>
<tr>
<td>4.9.2</td>
<td>Out-of-band blocking – high side blocker</td>
<td></td>
</tr>
<tr>
<td>4.10.1</td>
<td>Rx Intermodulation</td>
<td></td>
</tr>
<tr>
<td>4.11.1</td>
<td>Cold Start</td>
<td></td>
</tr>
</tbody>
</table>
6 Glossary

<table>
<thead>
<tr>
<th>Code</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABP</td>
<td>Activation by Personalization</td>
<td></td>
</tr>
<tr>
<td>ADR</td>
<td>Adaptive Data Rate</td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>Data Rate</td>
<td></td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>LoRaWAN Application Server</td>
<td></td>
</tr>
<tr>
<td>LGW</td>
<td>LoRaWAN Gateway</td>
<td></td>
</tr>
<tr>
<td>LNS</td>
<td>LoRaWAN Network Server</td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
<td></td>
</tr>
<tr>
<td>OTAA</td>
<td>Over-the-Air-Activation</td>
<td></td>
</tr>
<tr>
<td>TCL</td>
<td>Test Control Layer of the Test Harness</td>
<td></td>
</tr>
</tbody>
</table>
7 References

8 NOTICE OF USE AND DISCLOSURE

Copyright © LoRa Alliance, Inc. (2020). All Rights Reserved.

The information within this document is the property of the LoRa Alliance (“The Alliance”) and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

This document and the information contained herein are provided on an “AS IS” basis and THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that are made.

LoRa Alliance®
5177 Brandin Court
Fremont, CA 94538
United States

Note: All Company, brand and product names may be trademarks that are the sole property of their respective owners.